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Foreword

I take great pleasure in presenting a remarkable addition to our Newport
Papers series. While Major Glenn E. James, the author, received support and
assistance from sources within his own service, the U.S. Air Force, the final
research and the paper itself are the products of his term in the Advanced Research
Program at the Naval War College. This paper typifies the quality of work and
capabilities of our students from all the services here at the College. It is an
excellent example of the benefits we derive from the close collaboration between
our academic and research departments.

Chaos Theory: The Essentials for Military Applications is a highly challenging
work, one which demands—but amply repays—close attention. It asks for imagi-
nation to envision clearly the military applications for which the author argues.
Major James hopes that his efforts can help those of us who labor in the field of
national security to appreciate that Chaos theory is a valuable discipline. While
many of the applications of this new field remain conjectural and as yet unclear,
Major James has written a pioneering work which invites military officers to
understand the principles of Chaos and to look for applications. I commend this
Newport Paper in particular to policy-level readers, who will find it a useful and
understandable overview of the subject, and to the faculty members of all of the
service war colleges for whom we offer this as a useful text.

VS
Alark

J.R. Stark
Rear Admiral, U.S. Navy
President, Naval War College



Preface

Before You Begin...

Before you start into this report, it may help to relax and to prepare to be patient.

Be Patient with the Material...

Chaos as a branch of mathematics is still very young. The first concrete results
surfaced only thirty years ago. Enormous opportunities for new research remain
unexplored. As of yet, not all the bodies of interested researchers know one
another or exchange (or search for) information across disciplinary lines. This
paper represents my effort to continue the published conversation on Chaos
applications. I’m inviting you to eavesdrop, because the issues are crucial to the
military profession.

Be Patient with the Essay...

Several officers learned of my background in mathematics, and as I left for the
Naval War College, they asked me to consider how Chaos theory influences the
military profession. I examined the published resources that were being used and
felt compelled to correct some serious errors. Many publications overlook key
results, make fundamental technical mistakes, or scare the reader with the
complexity of the issues. While the progress documented in those papers is
noteworthy—many well-intentioned efforts were made under severe time con-
straints—we are overdue for a mid-course correction to prevent the errors from
propagating further.

My own Chaos research began in 1987 in my Ph.D. studies at Georgia Tech,
where Professor Raj Roy introduced me to Chaos in lasers. Since then, I have
taught mathematics for four years at the Air Force Academy, including three
special topics courses on Fractals and Chaos. This past year, I gave formal
presentations to the Air Command and Staff College student body and to two
small seminars of Naval War College faculty. This paper grew out of those talks,
subsequent questions, and my continuing research.

I have aimed this report at the broad population of students attending the
various war colleges. I have made the format conversational so I may talk with
them, not ar them, since this essay takes the place of what I might discuss in a
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more personal, seminar environment. I struggled to strike a useful balance,
sometimes offering many examples so that I can reach this broad audience, and
at other times foregoing extended illustrations on behalf of brevity. I have
assumed a minimal technical background, and resort to an appendix only where
absolutely necessary. I also offer a substantial bibliography of what I consider to
be the best available references for the reader who is anxious for more.

Be Patient with Yourself...

Finally, relax. Chaos isn’t hard to learn—it’s only hard to learn guickly. The
important results are often abstract generalizations, but we can arrive at those
conclusions via examples and demonstrations that are not difficult to visualize.
Allow yourself to wonder.

In his splendid book, Fractals Everywhere, Michael Barnsley warns:

There is a danger in reading further. You risk the loss of your childhood vision of
clouds, forests, galaxies, leaves, feathers, . . . and much else besides. Never again will
your interpretation of these things be quite the same.'

I will also warn you of the risks of not reading further: you may fail to
understand phenomena that are essential to decision makers, particularly in an
erawhen the speed and volume of feedback candrivethe dynamics of our physical
and social—hence, our military—systems into Chaos.

xti



Acknowledgements

My thanks go first to Colonel John Warden, U.S. Air Force, Commandant of
the Air Command and Staff College (ACSC), who first asked me to consider this
research topic. I gratefully acknowledge the Center for Naval Warfare Studies at
the Naval War College, which sponsored my work under the Advanced Research
Program, and Lieutenant Colonel Roy Griggs in the Air Force Strategic Planning
office, who sponsored this work along with Lieutenant Colonel Jeff Larson
through the USAF Institute for National Security Studies at the U.S. Air Force
Academy.

I am greatly indebted to my friend Major Bruce DeBlois, U.S. Air Force,
Professor of Air and Space Technology at the School for Advanced Airpower
Studies, Maxwell Air Force Base, Alabama, who fought hard to incorporate this
research into the Air University curriculum, and to Lieutenant Colonel Rita
Springer and Lieutenant Colonel Gus Liby, U.S. Air Force, for arranging my first
of several presentations to the ACSC student body.

I especially appreciate the extensive research and the encouragement of my
friend, Commander Bill Millward, U.S. Navy. He contributed a vast amount
of preliminary research and references that made this project possible in the
Advanced Research trimester at the Naval War College.

My thanks go also to many individuals who patiently critiqued my seminars
and drafts: the Naval War College faculty in Strategy and Force Planning; the
Rational Decision Making faculty; Dr. John Hanley, Program Director of the
Strategic Studies Group, and the students in his Decision Theory Elective;
Lieutenant Colonel Lloyd Rowe, U.S. Air Force; and Major Tom Tomaras, U.S.
Air Force. Finally, my deepest thanks to Dr. Stephen Fought, my advisor, for his
brave support and constant encouragement.



Executive Summary

This paper distills those features of Chaos theory essential to military decision
makers. The new science of Chaos examines behavior that is characterized by
erratic fluctuations, sensitivity to disturbances, and long-term unpredictability.
This paper presents specific ways we can recognize and cope with this kind of
behavior in a wide range of military affairs.

Designed for courses at the various war colleges, the paper makes three new
contributions to the study of Chaos. First, it reviews the fundamentals of chaotic
dynamics; the reader needs no extensive prerequisites in mathematics. Much
more than a definition-based tutorial, the first part of this paper builds the
reader’s intuition for Chaos and presents the essential consequences of the
theoretical results. Second, the paper surveys current military technologies that
are prone to chaotic dynamics. Third, the universal properties of chaotic systems
point to practical suggestions for applying Chaos results to strategic thinking and
decision making. The power of Chaos comes from this universality: not just the
vast number of chaotic systems, but the common types of behaviors and transi-
tions that appear in completely unrelated systems. In particular, the results of
Chaos theory provide new information, new courses of action, and new expecta-
tions in the behavior of countless military systems. The practical applications of
Chaos in military technology and strategic thought are so extensive that every
military decision maker needs to be familiar with Chaos theory’s key results and
insights.



Introduction

Welcome and Wonder

Physicists, mathematicians, biologists, and astronomers
have created an alternative set of ideas.

Simple systems give rise to complex behavior.

Complex systems give rise to simple behavior.

And most important, the laws of complexity hold
universally, caring not at all for the details of a

system’s constituent atoms.

James Gleick
Wake Up and Smell the Chaos

Thc contractor for the operational tests of your new missile system has
just handed you the chart in figure 1. He ran two tests, identical to six
decimal places, but the system performance changed dramatically after a few
time-steps. He thinks there was a glitch in the missile’s telemetry or that
somebody made a scaling error when they synthesized the data. Could it be
that the data is correct and your contractor is overlooking something critical
to your system?

Your wargaming staff is trying to understand and model the time dependence
of American aircraft losses in Vietnam. They look at the data in figure 2 and quit.
It’s just a random scatter of information, right? No patterns, no structure, too
many variables, too many interactions between participants, too large a role
played by chance and human choice. No hope, right?



The Newport Papers

Departure from Predicted Path © Testl

A Test?2

L Figure 1. Hypothetical Missile Test Data: What Went Wrong?
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Figure 2. U.S. Aircraft Losses in Viemam.’

The results of the new science of Chaos theory offer some intriguing answers to
questions like these. Moreover, the theory has profound implications for the dynam-
ics of an enormous variety of military affairs. In fact, the applications of Chaos in
military technology and strategic thought are so extensive that every military
decision maker needs to be familiar with Chaos theory’s key results and insights.

Why Chaos with a Capital “C"?

Chaos, as discussed here, is not social disorder, anarchy, or general confusion.
Before you read on, set aside your connotations of the social (small

« 9
C

2

) chaos



Chaos Theory

reported on the evening news. Chaos is a relatively new discipline of mathematics
with boundless applications; to highlight the difference, I will keep this special
use capitalized throughout.

Chaos theory describes a specific range of irregular behaviors in systems that
move or change. What is a system? To define a system, we need only two things:
a collection of elements—components, players, or variables—along with aset of
rules for how those elements change—formulas, equations, recipes, or instruc-
tions.

A remarkable feature of chaotic change is its contrast with “random” motion.
We generally label as random many irregular changes whose dynamics we can
not predict. We will find, as this report progresses, that Chaos displays many of
the same irregularities, with one important difference: the apparently random
motion of a chaotic system is often described by completely deterministic equations
of motion! Several specific examples of chaotic systems in this will illustrate this
point.

The term “Chaos” was first applied to such phenomena fewer than thirty
years ago—that’s a hot topic for mathematics! James Yorke characterized as
“chaotic” the apparently unpredictable behavior displayed by fluid flow in
rivers, oceans, and clouds.* Today, artificial systems move and react fast
enough to generate similar, erratic behavior, dynamics that were seldom
possible before the advent of recent technologies. Nowadays, many military
systems exhibit Chaos, so we need to know how to recognize and manage these
dynamics. Moreover, the universality of many features of Chaos gives us
opportunities to exploit these unique behaviors. Learn what to expect. This
is not a fleeting fad: real systems really behave this way.

What's New in This Essay?

Although numerous Chaos tutorials are available in various disciplines, there
are three main deficiencies in the available resources:
¢ Many tutorials require an extensive background in mathematical analysis.
¢ Manyworksdo not focus on useful applications of Chaos theory; they simply
offer a smorgasbord of vocabulary and concepts.
¢ Some contain major technical flaws that dilute their potential application
or mislead the reader.
So, the immediate need is threefold: we require an accessible bridge to connect
us with the basis of Chaos theory; we seek some in-depth demonstrations of its
applications; and we must avoid fundamental conceptual errors.

3
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Who Cares?

Even if Chaos can help military analysts, why should everyone be exposed to the
theory? After all, there is a balance here—you don’t need to know quantum
physics to operate a laser printer, right? This paper will show that Chaos occurs
in virtually every aspect of military affairs. The 1991 Department of Defense
(DOD) Technologies Plan, for instance, set priorities for research spending.5 It
ranked the following technologies based on their potential to reinforce the
superiority of U.S. military weapon systems:

1. semiconductor materials and microelectronics circuits
2. software engineering
3. high-performance computing
4. machine intelligence and robotics
5. simulation and modeling
6. photonics

7. sensitive radar

8. passive sensors

9. signal and image processing

10. signature control

11. weapon system environment

12. data fusion

13. computational fluid dynamics

14. air-breathing propulsion

15. pulsed power

16. hypervelocity projectiles and propulsion

17. high-energy density materials

18. composite materials

19. superconductivity

20. biotechnology

21. flexible manufacturing

Every one of these technologies overlaps with fundamental results from Chaos
theory! In particular, the chaotic dynamics possible in many of these systems arise
due to the presence of feedback in the system; other sources of Chaos are discussed
elsewhere in this report. In this paper, you will discover that the fundamentals of Chaos
areas important to military systems as Newton’s laws of motion are to classical mechanics.

Numerous systems tend to behave chaotically, and the military officer who
does not understand Chaos will not understand many of the events and processes

4
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that mark the life of today’s competent military professional. Look again at
figure 2. Not too long ago, if we had measured output like figure 2 in any scenario,
our analysts would have packed up and gone home, dismissing the dataas random
noise. However, it is not “noise” at all. Chaos theory helps us to know when erratic
output like that in the figure may actually be generated by deterministic (non-
random) processes. In addition, the theory provides an astounding array of tools
which make short-term predictions of the next few terms in a sequence, predict
long-term trends in data, estimate how many variables drive the dynamics of a system,
and control dynamics that are otherwise erratic and unpredictable. Moreover, this
analysis is often possible without any prior knowledge of an underlying model
or set of equations.

Applied Chaos theory already has a growing community of its own, but the
majority of military decision makers are not yet part of this group. For
example, the Office of Naval Research (ONR) leads DOD research into Chaos
applications in engineering design,but more militaryleaders need tobe involved
and aware of this progress. Beyond the countless technical applications, many
of which readily translate to commercial activities, we must concern ourselves
with strategic questions and technical applications that are unique to the pro-
fession of warfare. Chaos theory brings to the table practical tools that address
many of these issues.

Why Now?

As long as there has been weather, there have been chaotic dynamics—we
are only now beginning to understand their presence. Some scientists, like
Jules-Henri Poincaré in the late 1800s, had inklings of the existence of Chaos,
but the theory and the necessary computational tools have only recently
matured sufficiently to study chaotic dynamics. In 1963 Edward Lorenz made
his first observations of Chaos quite by accident when he attempted simula-
tions that had become possible with the advent of “large” computers. Cur-
rently, high-speed communications, electronics, and transportation bring new
conduits for feedback, driving more systems into Chaos. Consider, for in-
stance, the weeks required to cross the Atlantic to bring news of the American
Revolution to Britain. Now, CNN brings updates to decision makers almost
instantaneously.

Until recently, observations of the irregular dynamics that often arise in
rapidly fluctuating systems have been thrown away. Unless we train decision
makers to look for specific dynamics and the symptoms of imminent behavior
transitions, erratic data sets will continue to be discarded or explained away.6

)
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Clear Objectives

As the preface suggested, Chaos theory is not difficult to learn—it is only
difficult to learn quickly. Am I violating this premise by trying to condense the
essentials of Chaos into this single paper? I hope not. Iam trying to build a bridge
and sketch a map. The bridge spans the gap that separates physical scientists on
one side—including analysts in mathematics, physics, and electrical engineer-
ing—and humanists on the other—experts in psychology, history, sociology, and
military science. The bibliographical map identifies specific references on issues
that interest segments of the broad audience that I hope to reach with this paper.

My intent here is to teach the reader just enough to be dangerous, to highlight
the places where Chaos happens all around us. The results of Chaos theory can
improve military decision making and add new perspectives to creative thought.
I also will offer enough examples and applications so that readers can recognize
chaotic dynamics in common situations. Eventually, I hope the reader will grasp
the key results and apply them in various disciplines. My ultimate aim is to offer
anew perspective on motion and change, to heighten your curiosity about Chaos,
and to provide adequate tools and references to continue the deeper study that is
essential to fully understanding the fundamentals of Chaos.

Here’s the plan. In chapter I we start with Chaos that can be demonstrated at
home, so skeptics will believe Chaos is more than a metaphor, and so we all can
visualize and discuss important issues from a common set of experiences. I do
not want you mistakenly to believe that you need access to high-technology
circuits and lasers to concern yourself with Chaos—quite the contrary. Then we’ll
add some detail in chapter II, complementing these intuitions with better defi-
nitions. In chapter III, we consider the pervasiveness of Chaos in military
systems. Chapter IV offers practical means for applying Chaos theory to military
operations and strategic thinking. Most of the discussions proceed from specific
to general in order to lend a broad perspective of how Chaos gives new information,
new options for action, and new expectations of the dynamics possible in military
systems.

In the end, I hope you will learn to:

® Recognize chaos when you encounter it;

® Expect chaos in your field, your organization, and your experiments; and,

¢ Exploit chaos in your decision making and creative thought.



Part One

What IS Chaos?

Somehow the wondrous promise of the earth
is that there are things beautiful in it,

things wondrous and alluring,

and by virtue of your trade

you want to understand them.

Mirtchell ]. Feigenbaum






I

Demonstrations

The disorderly behavior of simple systems . . .
generated complexity:
richly organized patterns,
sometimes stable and sometimes unstable,
sometimes finite and sometimes infinite,
but always with the fascination of living
things.
That was why scientists played with toys.8

James Gleick
DEFINITELY Try This at Home!!!

The simple demonstrations in this chapter offer visualizations of a wide
range of chaotic dynamics. They also provide a good introduction to the
methods and tools available to observe, measure, and analyze these dynamics. My
main goal is to build the reader’s intuition of what Chaos looks like.

For any skeptical reader, these examples represent the first exhibits of the
extensive evidence I will produce to demonstrate how prevalent chaotic dynamics
are. For all readers, this chapter outlines common examples that provide a context
useful for discussing definitions, tools, key results, and applications in sub-
sequent chapters. We begin with demonstrations to set up at home in order to
show that access to high technology is not needed to observe Chaos. Quite the
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contrary: Chaos arises in some of the simplest physical systems. This brief
exposure to chaotic dynamics may also spark imagination about the systems
where Chaos may operate in particular areas of interest. A little later, after a more
complete description of the vocabulary and tools of Chaos (chapter II), we will
examine the military systems where one should expect to see Chaos (chapter III).
Remember: as we work through each example, the reader should gradually
come to expect and recognize Chaos in any system that changes or moves. As a
general plan for each demonstration that follows, we will:
1. Describe the physical system and answer clearly:
What is the system?
What is being measured?

2. Preview the significance of the particular system:
Why do we care about this demonstration?
Does it relate to any military system?

3. Discuss the significant dynamics and transitions.

4. Highlight those results and characteristics common to many chaotic sys-
tems.

The answers to item 1 are crucial. The confusion in many discussions about
Chaos can be traced to a failure to identify either a well-defined system or a set
of measurements. Likewise, to understand the appropriate ways to apply the
insights of Chaos, we need to use its terminology with some care. With this
priority in mind, the discussion of each demonstration will offer a first peek at
the Chaos vocabulary that chapter II presents in greater detail.

Warm-ups with a Simple Pendulum

Before we exercise our imaginations with chaotic dynamics that may be
entirely new, let’s first “stretch out” by examining the detailed behavior of a
pendulum. The simplicity of this example makes it easy to visualize and to
reconstruct in your home or office; it gives us an indication of good questions to
ask when we observe other systems.

As a hint of things to come, an extraordinary number of complicated physical
systems behave just like a pendulum, or like several pendulums that are linked
together. Picture, for instance, a mooring buoy whose base is fixed to the sea floor
but whose float on the surface (at the end of a long slack chain) is unconstrained.
Much of the buoy’s motion can be modeled as an upside-down pendulum.9

What is the pendulum’s “system,” exactly? A fixed mass, suspended at the
end of a rigid bar, swings in only two dimensions (left and right swings only, no

10



Chaos Theory

Figure 3. Simple Pendulum, No Wobbles Allowed!

additional motion). The end of the bar is fixed at a single point in space, but let
us assume there is no “ceiling,” so the pendulum is allowed to swing up over its
apex and around to the other side (figure 3). Notice that as we define the system
we must clearly state our assumptions about its components and its behavior.

What can be observed and measured in this system? Fortunately, in this
example we need only two pieces of information to describe completely the physical
“state” of the system: position and velocity. The pendulum’s position is measured in
degrees; its velocity is measured in degrees per second. These two observable
quantities are the only two independent variables in the system, sometimes referred
to as its degrees of freedom or phase variables. A system’s phase variables are those
time-dependent quantities that determine its state at a given time. Observe that even
though the pendulum swings in a curve that sits flat in a two-dimensional plane, we
need only one variable to describe the pendulum’s position in space. Therefore, the
pendulum has only one degree of freedom in its angular position.

So, what can this pendulum do? Let’s pretend, at first, that it experiences no
friction, drag, or resistance of any kind. This ideal pendulum exhibits a rich
variety of behavior. If we start it at “the bottom,” where both position and velocity
are zero, it stays there. Any state that has this property—not changing or moving
when undisturbed—is called an equilibrium, steady state, or fixed point for the
system. If we displace the pendulum a few degrees to either side and just let it go,
it swings back and forth periodically, with the same amplitude, forever. In this
ideal system, we can also carefully balance the pendulum at the top of its swing,

11
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and it will stay put forever. This state, with position 180 degrees and velocity zero,
is another equilibrium point.

Does this ideal pendulum display any other dynamics? Perhaps just one more:
we can impart enough initial velocity to the pendulum so that it swings upward
over its apex and continues to wrap around its axle, forever. This completes the
listofpossible dynamics for the ideal pendulum, and it completes a first exposure
to some important terms used to describe all dynamical systems.

Now let’s get back to reality and add some resistance to the system, where the
pendulum experiences “damping” due to friction and drag. This real pendulum still
has the same two equilibrium points: the precise top and bottom of its swing, with
zero velocity. A new feature we can discuss, though, is the stability of these fixed points.
Ifwedisturb any pendulum as it hangs at rest, it eventually slowsits swingand returns
to this low equilibrium. Any such fixed point, where small disturbances “die out,”
and the system always returns to its original state, is called a stable fixed point (figure
4a). On the other hand, at the top position of 180 degrees, any perturbation to the
right or left sends the pendulum into a brisk downswing that eventually diminishes

(o} (——)

‘—Q;)*ﬁ o)

(a) Ahhh . . . stability (b) Unstable ..Don’t Breathe !!

Figure 4. Stable and Unstable Equilibrium Points.

until the pendulum hangs at rest. When a system tends to depart from a fixed
point with any minuscule disturbance, we call it an unstable fixed point (figure 4b).

We should note several other issues concerning the pendulum’s motion that
will arise when we study more complicated systems. First is the observation that
the pendulum (with friction) displays both transient and limit dynamics. The
transient dynamics are all the swings, which eventually damp out due to resistance
in the environment. After all the transients die out, the system reaches its limit

12
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dynamics, which in this case is a single state: the lower fixed point, with zero
position and velocity.

It seems we may be reaching the point where we have exhausted the possible
dynamics in this simple pendulum system. After all, even though this is a
harmless way to introduce the vocabulary of fixed points, dynamics, transience,
and stability, there is only so much a pendulum can do. Right?

When the system remains undisturbed, the answer is a resounding Yes! The
reason: the motion of a simple pendulum, unforced, is a linear system whose
solutions are all known. In particular, the equation of motion, for the position
y, comes from Newton’s familiar relation, force equals mass times accelera-
tion:

my’ + ¢y’ + ky = 0, (1)

where m is the pendulum mass, ¢ is a measure of friction in the system, and &
includes measures of gravity and bar length.

Now, the swinging motion we observe appears to be anything but linear: a
pendulum swings in a curve through space, not a straight line, and the functions
that describe oscillations like these are wavy sines and cosines. However, the
equation of motion—like the system itself—is called /inear because the equation
consists of only linear operations: addition, multiplication by constants, and
differentiation. When the pendulum experiences no external forces, the resulting
homogeneous equation shows a zero on the right-hand side of equation (1). What
is the significance of recognizing a linear, homogeneous system? All the solutions
are known; all possible behaviors are known and predictable.

Toadd the last essential layer of reality and to generate some interesting motion
in the pendulum system, envision a playground swing. Once you start yourself
swinging, how do you get yourself to swing much higher? You add a relatively
small external force to the system: you kick your legs and lean forward and back
inamanner carefully timed with the larger motion of the swing itself. By pumping
your legs like this, you add a periodic force to the right side of equation (1) and
you resonate and amplify a natural frequency of the large swing.

This addition of an external kick, or forcing function, to the pendulum system
caninduce interesting new dynamics. Be aware that, especially if you are pushing
someone else on the swing, you can control three different features of the
perturbation: where you push, how hard, and how often. The system may respond
to the external forcing in many different ways. It may resonate with one of its
natural frequencies (you may have seen the film of the Tacoma Narrows Bridge
being destroyed by the violent oscillations induced by resonance with wind
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gusts). In another instance, the swing may behave quite unpredictably if you push
the chains instead of the swing. You may momentarily bring the entire system to
a halt, or cause intermittent lurches in the swing; or you may get very regular
motion for a long time, only occasionally interrupted by off-cycle bumps or
jostles.

The playground swing, as a system, is just like the simple pendulum. However,
when you “kick” it occasionally, you begin to observe departures from predictable
behavior. This irregular sort of behavior, characteristic of a kicked pendulum, is
one of the many traits of Chaos: behavior that is not periodic, apparently random,
where thesystem response is still recurrent (the pendulum still swings back and forth)
but no longer in a predictable way. In his classic work on Chaos, James Gleick
correctly asserts that, because of the rich dynamics possible in such a simple
system, physicists were unable to understand turbulence or complexity accurately
until they understood pendulums. Chaos theory unites the study of different
systems so that thedynamics of swings and springsbroaden to bring new insights
to high technologies, from lasers to superconducting Josephson junctions, con-
trol surfaces in aircraft and ships, chemical reactions, the beating heart, and brain
wave activity.10

As this paper continues, we will see more detailed connections between the
behavior of pendulums and other more complicated systems. For now, let us move
on to our second home demonstration of Chaos, introduce some additional
vocabulary, and continue to build our intuition for what we should expect to see
in a chaotic system.

The Dripping Faucet

The second home demonstration can be done at the kitchen sink, or with any
spout where you can control the fluid flow and observe individual drops. This
demonstration mimics an original experiment by Robert Shaw and Peter Scott
at the University of California Santa Cruz.!!' It wonderfully illustrates several
features of Chaos, particularly the transitions between various dynamics, which
are common to many systems. The results are so astounding that you may want
to bring your reading to the sink right now and experiment as you read along.
Otherwise, you may not believe what you read.

What is the system? To recreate the Santa Cruz experiment, we need a faucet
handle or spigot that can be set at a slow flow rate and then be left alone so we
can observe drops emerging for a few minutes. We need enough water available
so the flow continues without interruption. Finally, we need some means to detect
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the time intervals between drops. We don’t need a stopwatch, exactly, but we do
need a clear view of the drops, or we need the drops to land on some surface that
resounds loudly enough for us to detect patterns and rhythms as the drops fall.
Fortunately, we need no assumptions about the water quality or any details about
the size or material of the spout. We just need drops.

What can we observe and measure in this system? We want to have a clear
view of the drops forming; this will give us some intuition as to why the flow
makes transitions between different kinds of behavior. We want to measure the
time intervals between drops. Shaw and Scott did this very precisely with a laser
beam and computer. For us, it will suffice to watch or listen as the drops land.

What's the significance? Because of the difficulties in modeling any fluid,
there is absolutely no hope of simulating even asingle drop forming and dropping
from a faucet. However, by measuring only one simple feature of the flow, the
time between events, we can still understand many characteristics of the system
dynamics. We will observe, for example, specific transitions between behaviors,
transitions that are common to many chaotic systems. We will also gain some
useful metaphors that are consistent with our intuitions of human behavior; but,
much more important, we will learn some specific things to expect in chaotic
systems, even when we cannot model their dynamics.

So, what kinds of things can a sequence of water drops do? If the spigot is
barely open and the flow extremely slow, you should observe a slow, regular
pattern of drips. Leave the faucet alone, and the steady, aggravating, periodic
rhythm will continue far into the night. This pattern represents steady state,
periodic output for this system. Increase the flow ever so slightly, and the drips
are still periodic, but the time interval between drips decreases, that is, the
frequency increases. Atthe other extreme of its behavior, with the flow rate turned
much higher, the water will come out as a steady, unbroken stream. No real
excitement yet.

The big question is: What happens in between these two extreme behaviors?
How does the flow make its transition from periodic drips to a steady stream?
We'll move step by step through the transitions in this system. Low flow rates
will generate slow, regular drips. Increased flow will produce regular drips with
new patterns. After a certain point, the drop dynamics will prevent the faucet
from dripping regularly, and we will see evidence of Chaos.

Here’s how to proceed with the experiment. Start with slow, steady dripping.
Watch, for a moment, how the drops form. A single drop sticks to the end of the
spout and begins to fill with water, like the elastic skin of a balloon (figure 5).
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Figure 5. Formation of Water Drops from a Spout.
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Eventually the drop grows large enough to overcome its surface tension; it breaks
off and falls. The water left on the spout first springs back and recovers, then it
begins to fill up to form the next drop: we will see that the time it takes to do all
this is a critical feature of the system.

Now, very gradually, increase the flow rate. For a while, you will still see (or
hear) periodic dripping, while the frequency continues to increase. However,
before too long—and before the flow forms a solid stream—you will observe a
different dripping pattern: an irregular pattern of rapid dripping interspersed
with larger splats of various sizes, all falling at erratic, unpredictable time
intervals. What causes the new behavior? The drops are beginning to form so
quickly that a waiting drop does not have time to spring back and completely
recover before it fills with water and breaks off. This is chaotic flow.

This deceptively simple demonstration is essential to our intuition of Chaos, for
several reasons. First, despite the nasty fluid physics that is impossible to model in
detail, we are able to make simple measurements of time intervals and learn a great
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deal about the system dynamics. We learn in this experiment that we need not
dismiss as intractable the analysis of a system that seems to be too large or has
“too many variables” or “too many degrees of freedom.” (One can surely imagine
quite a few military systemswith these imposing properties, starting with a conven-
tional battlefield.) The water drops give us hope: by isolating and controllingone key
parameter and making one straightforward measurement, we can still come to
understand, and perhaps manipulate, a very complicated system.

The second common feature of Chaos illustrated by the dripping faucet is the
presence of this key control parameter—in our case, the flow rate, controlled by the
spigot. Think of a control parameter as a single knob that allows regulation of the
amount of energy in the system. Not only does this energy control provide a means
to dictate the dynamics of the dripping faucet, but the fransitions between various
behaviors are identical in countless, seemingly unrelated, physical systems. In the
faucet, for instance, low flow generates periodic output; an increase in flow leads to
higher-period behavior; even higher flow—more energy in the system—allows
chaotic dynamics. Moreover, the Chaos appears when the system has insufficient time
to relax and recover before the next “event” occurs. These same transitions take place
in mechanical, electrical, optical, and chemical systems. Even more surprisingly, the
transitions to more complicated behavior can occur at predictable parameter values
(“knob” settings), a result that will be treated in the demonstration that follows.

The critical conclusion is that our knowledge of chaotic systems teaches us to
expect specific behaviors in a system that displays periodic behavior; to expect
to see higher periods and Chaos with more energy input; and to forecast, in some
cases, parameter values that permit these transitions.

A third common characteristic of chaotic systems highlighted here is the fact
that the system dynamics are revealed by observing time intervals between events.
The physical event—droplet formation and break-off—is impossible to simulate,
so we avoid taking difficult measurements like drop diameter, drop mass, or
velocity. Instead, we note the length of time between events; if we can measure
this accurately, we are able to construct areturn map or first-return map that clearly
indicates the various patterns of behavior (figure 6).

On the x-axis, a return map plots the time difference between, say, drops 1 and
2, versus the y-axis, which plots the time difference between the next two—here,
drops 2 and 3. When the flow is slow and periodic, the time intervals are regular,
so the time between the first drops is equal to the time between the next pair of
drops.On the plot,thatmeans we are plottingx-values and y-values that are always
equal, so we see a single dot on the plot (figure 6a). So, if we ever observe a return
map where all the data fall on a single point, we can conclude the system is
behaving periodically.
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(a) Period-1 (b) Period-2 (c) Chaos

Figure 6. First-Return Maps for the Dripping Faucel.

If we consider our time-difference measurement a record of the state of our
system, then any /imit behavior summarized on the return map represents an
artractor for the system. An attractor is a collection of states that a system “settles”
into after its transient dynamics die out. For the periodic flow, the attractor is a
single point on the return map.

The next transition in drop dynamics was reported by Shaw and Scott but is
fairly difficult to perceive in our home experiment. At a specific range of flow
rates, before the onset of Chaos, they observed a rapid string of drops that fell off
in close pairs. The flow showed a different periodicity, with one short time-step
followed by a longer time-step: drip-drip drip-drip drip-drip. They confirmed
the existence of this change in periodicity by using a simple model of their system,
but its presence was clear on the return map (figure 6b).12 In this case, we say the
sequence of drops has period-2, that the system has undergone a period doubling,
and that the attractor is the set of two points on the plot. For the record, this
system (like many others) experiences additional period doublings to period-4,
period-8, etc., before the onset of Chaos. These transitions, however, can be
difficult to detect without sensitive laboratory equipment.

Finally, chaotic flow generates time intervals with no periodicity and no
apparent pattern. However, the chaotic return map does not simply fill all the
available space with a random smear of points. There is some rough boundary
confining the chaotic points, even though they appear to fill the region in an
erratic, unpredictable way (figure 6¢). What is most astonishing is that this smear
of points is amazingly reproducible. That is, we could run the experiment
anywhere, with virtually any water source, and a very similar pattern of points

18



Chaos Theory

would appear on the return map for chaotic flow. The structure of the collection
of points is due to the dynamics of water drops in general, not the specific
experimental machinery.

The water drop experiment offers additional hope that we might control a
chaotic system. (What follows is easiest to demonstrate if you use a portable water
spout, like an empty mustard bottle, but it may work well if your kitchen spout
is sufficiently flexible.) Set the spout so you have flow that remains chaotic. Then
jiggle the spout in some regular, periodic way. You might bounce the mustard
bottle up and down, or simply tap the end of your kitchen faucet with a regular
beat. You should be able to find the right strength and frequency to perturb your
system and get it to change from Chaos back to periodic drips, with a periodicity
that will match the beat of your tapping. This is not very different from kicking
your legs on the swing. However, in this case, we are starting with a chaotic system
and applying a relatively small disturbance to force the system to return to more
stable periodic behavior.

Later discussion will offer more details concerning Chaos control that has been
demonstrated successfully in both theory and practice. We will also consider
issues of when we might prefer Chaos to be present, or not present, in a given
system. At this point, it is interesting to notice that the perturbation of the
dripping faucet can drive a chaotic system into stable (periodic) behavior, while
our previous perturbation of the park swing forced it to go from stable periodicity
into Chaos.

So far we have introduced two chaotic systems whose dynamics will lend some
insight to the behavior of more complicated military systems. The first was
mechanical, the second fluid. Our next demonstration involves some simple (and
inexpensive) electro-optics that can be picked up at any hardware store.

Night-light

I stumbled onto this demonstration quite accidentally, when I went to plug in
a small night-light in our bathroom—one of those automatic lights, about the
size of your palm, that turns on automatically when the room is dark. I plugged
it into the socket; the room was dark. Just before I pulled my hand away from the
night-light, it flickered rapidly. I put my hand near the light again and I saw the
same flicker. What interesting dynamics are hiding in this system?

What's the system? To reconstruct this system we need a light source of any
kind that includes an automatic sensor that cuts off the electric current when it
senses light (figure 7). We also need a dark room and a mirror, small enough so
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Figure 7. Night-light with Feedback.

we can move it around near the light, and supported in a stand so we can steady
the mirror and observe the light. Now, set the mirror so it reflects light from the
bulb back onto the sensor (as my palm had for my night-light in the bathroom).
By adjusting the mirror’s distance from the sensor, we can vary the delay of
feedback in the system.

What are we observing and measuring? When the mirror is close enough to
the night-light, about four to twelve inches, you should see it flicker. What’s going
on? Quite simply, the sensor is doing its best to fulfill its mission under unusual
circumstances. Initially, the room is dark, so the sensor turns its light on; but
with the mirror in place, as soon as the light turns on, the sensor picks up the
reflected light and correctly decides to shut off. Oh dear, the sensor mutters, the
room is dark again: time to turn on, and so on. The sensor detects and responds
very quickly, so we see the night-light flicker vigorously.

What exactly should you observe in this system? Like the dripping faucet, the
output to measure here is the frequency—in this case, the flickering fre-
quency—the time difference between events. We would probably learn even more
by also monitoring the light’s intensity, but this requires fancier equipment than
most of us keep around the house.

What transitions should we expect? To see the range of dynamics possible in
this system, start with the mirror far from the sensor, about a yard or so away.
Slowly draw the mirror closer to the sensor. The first change you’ll see is a
noticeable dimming in the light. Honestly, I don’t know yet whether this is a
simple change in the light’s output or a fluctuation whose frequency exceeds our
visual resolution. Do your best to locate the farthest point from the light where
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the dimming begins. Let’s label this distance do. You may find that do is up to a
foot or two away from the light.

As you move the mirror even closer, the next change you’ll probably see is the
first sign of flickering. Once again, try to mark the farthest place where the flicker
is noticeable and label it d}. As you continue to move the mirror toward the sensor,
you will see various ranges of distances where the flickering displays other
periodicities, and you ought to see at least one region where the reflected feedback
drives the system into Chaos: irregular bursts of brightness and flickering. Mark
the distances, as well as you’re able, where you see transitions: d2, d3, etc. If you
don’t observe any Chaos, how might you alter your system? There are several
accessible control variables: try a different (cleaner?) mirror; change your reflec-
tion angle (are you hitting the sensor efficiently?); or use a brighter light bulb.

What's the significance? The dynamics exhibited by the night-light system
point toseveral critical insights that will help us apply the general results of Chaos
theory to other systems. The first new insight comes from the dynamics we can
generate by imposing feedback on a system. Of course, the use of feedback itself
is not new, but the output we observe in the night-light provides a new under-
standing of the dynamics that control theorists have wrestled with for decades.

The night-light demonstration also offers practical new approaches to the
study and control of a system whose output sometimes fluctuates. In particular,
once I observed periodic behavior in the system (accidental though it was), I knew
to expect several ranges of periodicity and Chaos if I varied one of the control
parameters available to me. That is, my experience with Chaos gave me very
specific behaviors to expect, in addition to obvious suggestions of ways to control
the dynamics. Moreover, I had some idea of the kinds of dynamics to expect without
knowing anything about the internal workings of the system!

This universality of chaotic dynamics underscores the power of understanding
the basic results of Chaos theory. Certainly, not every system in the world is
capable of generating Chaos, but in many systems we can control and analyze a
system with no need for a model.

Here are two simple examples of the kind of analysis that is possible, even
without a model. For this analysis we need only the list of distances (do, d1, etc.)
where we noted transitions in system behavior. First of all, we know that the
signal in our demonstration, the light from the bulb, is traveling at a known
constant, ¢ = 3.0 x 10% meters/second. Therefore, we can quickly assemble a list
of important time constants for this system by dividing each of our distances by
the speed of light, c. These time constants directly affect important transitions
in the light’s output; we know we can alter the system’s behavior by applying
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disturbances that are faster or slower than these key time delays. Other time
constants we might consider include the frequency of the electric current and the
frequency (color) of the light.

A second numerical result gives us some hope of predicting the parameter
values where transitions in dynamics should occur. Dr. Mitchell Feigenbaum of
Los Alamos National Laboratory, New Mexico, discovered that many chaotic
systems undergo transitions at predictable ranges of their parameter settings. In
particular, he compared the ratio of differences between key parameter values,
which for us translates into calculating a simple ratio:

(do-dy)/(d1-d2) Q)

He discovered that this ratio approaches a universal constant, approximately
4.67—now known as the Feigenbaum number—which appears in chaotic systems
where Chaos arrives via period doubling, such as in our dripping faucet. This amazing
result tells us when to anticipate changes in dynamics. For instance, if our first
transition happens when the mirror is 1 2 inches out, and the second transition occurs
at 8 inches, we note the difference in these parameter values, 4 inches (figure 8).
Feigenbaum tells us that we ought to expect another transition (di - d2) in another
4/4.67 inches, or 0.85 inches from the point of the last transition.

| |
! d3  chaotic flicke ing

(dl - d2)
—— |
(do - dl) i d2  faster periodic ]

| |
/ N 41 periodic !

d  dimming distance

Figure 8. Finding the Feigenbaum Constant in the Night-light Experiment.
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Now, in any system where we try to make predictions this way, we may face
other complications. Our moving mirror, for example, may actually change
several control parameters at once, such as brightness and focus. However, the
mere existence of the Feigenbaum constant gives us hope of being able to
anticipate critical changes in complicated systems; in fact you should find that
this prediction works quite well for your measurements with your night-light
system!

This third home demonstration brings to light several key results that apply
to many chaotic systems. In particular, the demonstration illustrates: the poten-
tial dynamics that can be generated by imposing feedback on a system; very
specific behaviors to expect in chaotic systems; suggestions of ways to control a
system’s dynamics; ways to analyze and control a system with no need for a formula
or model; and how the Feigenbaum constant helps anticipate system transitions.

Other Home Demonstrations

Many other systems you see every day exhibit chaotic dynamics. Watch the
cream stir into your coffee. How does a stop sign wobble in a rough wind? Think
about the position and speed of a car along a major city’s beltway. What are the
states of all the cars traveling the beltway?13 Watch the loops and spins of a tire
swing in a park. If you are really adventurous, hook up your home video camera
as it shows a live picture on your television set, then aim the camera at the
television set and zoom in and out to generate some exciting feedback loops.

Consider how you might carefully describe those systems. What can you
observe and measure in those systems? What are the important parameters? As
the control parameters increase or decrease, what transitions in behavior should
you expect?

I have summarized several home demonstrations in this chapter to develop
some intuitions and to introduce the vocabulary and tools of dynamical systems.
I hope they spark your imagination about comparable systems that interest you.
More importantly, they may represent your first understanding of chaotic sys-
tems, so you can begin to expect and anticipate Chaos in your systems. The next
chapter adds more detail to the vocabulary and ideas introduced here.
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Definitions, Tools, and Key Results

Of all the possible pathways of disorder,
nature favors just a few.

James Gleick

The previous chapter described a few simple demonstrations so that we could
begin to develop some basic intuition for chaotic dynamics. I also used
some of the associated Chaos vocabulary in those demos in order to introduce the
definitions in the context of real systems. Detailed definitions require too much
time to present in full. However, we need to review some vocabulary with care,
since the tools for observing and exploring complex dynamics are linked closely
to the vocabulary we use to describe our observations. Rather than pore through
excruciating details of precise definitions, this chapter concentrates on the
consequences of the definitions. The focus will be to answer questions such as,
“What does it mean to be an attractor?”

We will narrow the discussion to the most important issues: What is Chaos?
How can we test for it? What does it mean to me if I have Chaos in my system?
By concluding with a summary of Chaos theory’s key results, the way will be
paved for later chapters that suggest ways to apply those results.

This chapter concentrates on two classic chaotic systems: the logistic map and
Lorenz’s equations for fluid convection. These two examples reinforce some of
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the lessons learned in the last chapter, and they make a nice bridge to the military
systems examined in the next chapter. In particular, I will apply common Chaos
tools to these two examples so that the reader can visualize the kind of new
information Chaos theory can provide about a system’s behavior.

The Logistic Map

What is the system? Our first case looks at the work of biologist Robert May,
who in the early 1970s researched the dynamics of animal populations. He
developed a simple model that allowed for growth when a population of moths,
for instance, was small; his model also limited population growth to account for
cases of finite food supply.15 His formula is known as the logistic equation or the
logistic map.

What are we observing and measuring? The logistic map approximates the
value of next year’s population, x/n+1],based on a simple quadratic formula that
uses only information about this year’s population, x/n]:

x[n +1] =Ax[n] (1-x[n]).

The parameter A quantifies the population growth when x/n] is small, and A
takes on some fixed value between 0 and 4. In any year n, the population x/n] is
measured as a fraction, between 0 and 1, of the largest community possible in a
given physical system. For example, how many fish could you cram into the cavity
filled in by agiven lake? The populationx/n] expresses apercentage of that absolute
maximum number of fish.

It is not too hard to illustrate the dynamics of the logistic map on your home
computer. Even with a spreadsheet program, you can choose a value for A and a
starting value for x/1], and calculate the formula for x/2]. Repeated applications
of the formula indicate the changes in population for as many simulated years as
you care to iterate. Some of the dynamics and transitions you should expect to
see will be discussed in this chapter.

What's the significance? One helpful simplification of May’s model was his
approximation of continuously changing populations in terms of discrete time
intervals. Imagine, for instance, a watch hand that jerks forward second by second
instead of gliding continuously. Differential equations can describe processes that
change smoothly over time, but differential equations can be hard to compute.
Simpler equations, difference equations, like the logistic map, can be used for
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processes that jump from state to state. In many processes, such as budget cycles
and military force reductions, changes from year to year are often more important
than changes on a continuum. As Gleick says, “A year-by-year facsimile produces
no more than a shadow of a system’s intricacies, but in many real applications
the shadow gives all the information a scientist needs.”!®

The additional beauty of the logistic map is its simplicity. The formula
includes nothing worse than an x% term—how badly can this model behave? Very
shortly, you will find that this simple difference equation produces every signifi-
cant feature common to most chaotic systems.

The Lorenz Equations

What's the system? Our second case began as a weather problem. Meteorolo-
gist Edward Lorenz wanted to develop a numerical model to improve weather
predictions. Focusing on a more manageable laboratory system—the convection
rolls generated in a glass of heated water—Lorenz modified a set of three fairly
simple differential equations.17
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What are we observing and measuring? The phase variables, x, y and z
combine measurements of the flow as the heated water rises, cools, and tumbles
over itself (figure 9a). The x variable, for instance, is proportional to the intensity
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(a) The System (b) A Trajectory in Phase pace' 8

Figure 9. Lorenz' Weather-in-a-Beaker.
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of the convection current;y is proportional to the temperature difference between
the rising and falling currents. The numbers 6, R and B are the system’s physical
parameters, which Lorenz set at 0 = 10, R = 28, and B = 8/3. As the phase
variables change in time, they trace out fascinating patterns, like those illustrated
in figure 9b.

What's the significance? The Lorenz equations crudely model only one
simple feature of fluid motion: temperature-induced convection rolls. However,
even in this simple system, Lorenz observed extreme sensitivity to initial condi-
tions as well as other symptoms of Chaos we will see momentarily. He clearly
proved that our inability to predict long-term weather dynamics was not due to
our lack of data. Rather, the unpredictably of fluid behavior was an immediate
consequence of the nonlinear rules that govern its dynamics.

Definitions

Now that we have two new systems to work with, along with the “experience”
of our home demonstrations, let’s highlight the vocabulary we will need to discuss
more complicated systems.

Dynamical System. Recall how we defined a system as a collection of parts along
with some recipe for how those parts move and change. We use the modifier
dynamical to underscore our interest in the character of the motions and changes.
In the case of the logistic map, for example, the system is simply a population
measured at regular time intervals; the logistic equation specifies how this system
changes in time.

Linear and Nonlinear. The adjective linear carries familiar geometrical connota-
tions, contrasting the linear edge of a troop deployment, for example, with the
curved edge of a beach. In mathematics, the concept of linearity takes on broader
meaning to describe general processes. We need to understand linearity because
isolated linear systems cannot be chaotic. Moreover, many published explanations of
linearity make serious errors that may prevent you from grasping its significance.

Some authors condense the definition of linearity by explaining that in a linear
system the output is proportional to the input. This approach may be helpful
when we model the lethality of certain aircraft, saying that three sorties will
produce three times the destruction of a single sortie. However, there is at least
one further level of insight into linearity. That insight comes from our first home
demonstration, the pendulum,
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Even though a pendulum swings in a curve and we describe its motion with
sine and cosine functions, an ideal pendulum is a/inear system! It’s linear because
the equation that defines its motion has only linear operations: addition and
multiplication by constants. Common nonlinear operations include exponents,
trigonometric functions, and logarithms. The important consequence is that the
solutions to most linear systems are completely known. This may not seem
earth-shattering for a single pendulum, but many oscillating systems—such as
vibrating aircraft wings, mooring buoys, and concrete structures subjected to
shock waves—behave just like a collection of coupled pendulums. Therefore, as
long as they aren’t regularly “kicked” by external forces, those real systems are
just enormous linear systems whose range of possible motions is completely
known.

Without delving into the subtleties of more analytical definitions, here are
some important consequences of the property of linearity:

* The solutions to linear systems are known (exponential growth, decay, or
regular oscillations), so linear systems cannot be chaotic.

* “Kicking” or forcing an otherwise linear system can suffice to drive it into
Chaos.

¢ If Chaos appears in a system, there must be some underlying nonlinear
process.

This discussion of linearity should serve as a wake-up call. Basically, if you
have a system more complicated than a pendulum, or if you see an equation with
nonlinear terms, you should be alert for possible transitions from stable behavior
to Chaos. Thisis certainly asimplification, since many systems include additional
control mechanisms that stabilize their dynamics, such as feedback loops in
human muscles or in aircraft control surfaces. However, the minimum ingredi-
ents that make Chaos possible are usually present in systems like these. In the
absence of any reliable control, unpredictable dynamics are not difficult to
generate.

Phase Space and Trajectories. A system consists of components and their rules
of motion. To analyze a system one must decide exactly what properties of those
components to measure and record. The time-dependent properties necessary to
determine the system dynamics are known as the system’s phase variables. The
collection of all possible combinations of values those variables can attain is then
the phase space for our system.

Phase space is the canvas where a system’s dynamics are painted. The Lorenz
equations, for example, define the time-dependent changes of fluid flow in a
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heated beaker of water. If we start at some initial state and let the system evolve
in time, we can track how the three system variables change. We can then plot
thatinformation with a three-dimensional curve (figure 9b). Notice that the curve
does not directly illustrate the physical motion of the water. Rather, the curve
indicates changes in all three phase variables; at least one of these—the tempera-
ture gradient, y—quantifies changes we cannot see. The plot’s entire three-
dimensional space constitutes the phase space for the Lorenz equations; we call
the single curve that leaves a particular initial state atrajectory (or trajectory in phase
space) for that initial condition.

Parameter. A parameter is a quantity that appears as a constant in the system’s
equations of motion. The logistic map has only one parameter, A, which expresses
the rate of growth for small populations. A pendulum’s parameters include its
mass and the length of its bar. Sometimes a parameter expresses a physical constant
in the system, such as the gravitational constant for the pendulum. Most impor-
tant, a system parameter often represents a control knob, a mechanism to control
the amount of energy in a system.

For instance, we saw earlier how changes in flow rate, the key parameter for
the dripping faucet, drove transitions in system output. In the following section
on Chaos Tools, we’ll see how the logistic map undergoes transitions as we
increase A from 0 to 4. It is important to note that even in relatively simple
systems like the faucet, there are many influential parameters that are not easily
controlled: spout diameter, mineral content of the water, local humidity, spout
viscosity, etc. One crucial skill for any decision maker is the ability to identify all
the parameters accessible to external control, and to isolate those parameters that
have the greatest influence on a system.

Sensitivity to Initial Conditions (SIC). Any system “released” from its initial state
will follow its laws of motion and trace some trajectory in phase space, as we saw
with the logistic map above. However, ifa system is sensitive to initial conditions
we also know that any rwo initial states that deviate by the slightest amount must
follow trajectories that diverge from each other exponentially. Consider figure 10.
The lower series started from an initial population only slightly greater than the
upper series; after about sixteen iterations, the two trajectories bear no resem-
blance to each other. This is an illustration of SIC.

We can measure how fast neighboring trajectories tend to diverge. Atany given
point in phase space, a Lyapunov (lee-OP-uh-noff) exponent quantifies this rate of
divergence. This exponent has properties that come from its role as the constant
k in the exponential function & Ifk is negative, then small disturbances tend to
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Figure 10. Chaotic Trajectories of the Iterated Logistic Map."’

get smaller, indicating no SIC; if k is positive, small perturbations increase
exponentially. With these measurements, we can estimate how “touchy” a system
is, how vulnerable the system may be to external disturbances, and how unpre-
dictable the consequences of our actions may be. We can often calculate an average
Lyapunov exponent for an entire region of phase space. This allows us to compare
two systems, or two scenarios, and decide which one tends to be more or less
predictable. Information like this could prove valuable for prioritizing the
courses of action available to a commander.

Many systems, as we say, are SIC, including some non-chaotic systems. For
example, take the simplest case of exponential growth, where a population at
any time 1 is given by a recipe such as ¢¥. This system is SIC, but certainly not
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chaotic. What does this mean for us? Ifa system is SIC, you are not guaranteed
to find Chaos; if, however, a system is not SIC, it cannot exhibit Chaos. Thus
we have identified SIC as a necessary but not sufficient condition for Chaos to
occur.

Attractors. Despite the fact that chaotic systems are SIC, and neighboring trajec-
tories “repel” each other, those trajectories still confine themselves to some
limited region of phase space. This bounded region will have maximum and
minimum parameter values beyond which the trajectories will not wander, unless
perturbed. In the logistic equation, the population remains bounded between the
values of 0 and 1, though it seems to take on every possible value in between when
it behaves chaotically.

In the Lorenz equations, the trajectories also stay within finite bounds, but
the trajectories do not cover all the possible values within those limits. Instead,
a single trajectory tends to trace out a complicated, woven surface that folds over
itself in a bounded region of phase space (refer to figure 9). The collection of
points on that surface is an attractor for those dynamics; the classic Lorenz
attractor is a particularly striking example.

Left to itself, a single trajectory will always return to revisit every portion of
its attractor, unless the trajectory is perturbed. All chaotic, or strange, attractors
have this mixing property, where trajectories repeatedly pass near every point on
the attractor. Envision where a single droplet of cream goes after it is poured into
coffee.?’ Or imagine the path of a single speck of flour as it is kneaded into a ball
of dough. If the mixing continued long enough, the small particle could be
expected to traverse every neighborhood of its space. Actually, one way to sketch
a rough image of an attractor is simply to plot a single trajectory in phase space
for a very long time.

Transient states are all the initial conditions off the attractor that are never
revisited by a trajectory. If we gather together all the transient states that even-
tually evolve toward a single attractor, we define the basin of attraction for that
attractor. Thus, the basin represents all the possible initial states that ultimately
exhibit the same /imit dynamics on the attractor. In the Lorenz system, for instance,
we might start the system with a complicated temperature distribution by drop-
ping an ice cube into hot water. However, that transient extreme will die out, and
after a while the system must settle down onto the collection of temperature
variations that stay on the attractor. Because of SIC, the precise state of the Lorenz
system at any given time cannot be predicted. However, because the attractor
draws dynamics toward itself, we do know what the trends in the dynamics have
to be!
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When those trends are examined closely, a single trajectory will be found to
visit certain regions of the attractor more often than others. That is, if we color
each point on the attractor based on how often the trajectory passes nearby, we
will paint a richly detailed distribution of behavior on the attractor. To picture this,
visualize the distribution of cars on the interstate beltway around a big city. At
any time of a given day, we could note the number of vehicles per mile and begin
to identify patterns of higher traffic density for certain times of day. We could
continue and consider the distribution of cars on whatever scale interests us: all
interstates, all streets, or just side streets. Even though we cannot predict the
number of cars present on any particular street, these distributions and patterns
give us crucial information on how the overall system zends to behave.

The properties of attractors are key signposts at the junction where Chaos
theory matures past a mere metaphor and offers opportunities for practical
applications. Attractors provide much more information than standard statis-
tical observations. This is because an attractor shows not only distributions
of system states but also indicates “directional” information, that is, how the
system tends to change from its current state. As a result, when we construct
an attractor we reconstruct an image of the system’s global dynamics—without
appealing to any model. In subsequent chapters, we will show how this
reconstruction allows us to predict short-term trajectories and long-term trends, to
perform pattern recognition, and to carry out sensitivity analysis to help us make
strategic decisions.

Fractal. Though there are standard definitions of several types of fractals, the
important consequence for us is that fractals describe the complexity, or the
amount of detail, present in objects or data sets. A well-defined line, like the y-axis
on a graph, is one-dimensional because one piece of information, the y-coordinate,
suffices to pinpoint any position on the line. To get an idea of what dimension
means in a fractal sense, first imagine using a microscope to zoom in on an ideal
line. However intently we zoom in, the most detail we can expect to see is a
razor-thin line cutting across the field of view (figure 11a). If, as a second case,
we focus the microscope on a two-dimensional object, like a square, sooner or later
the narrow field of view will fill with an opaque image. We need rwo coordinates
to pinpoint any place on that image.

On the other hand, afractal image has a non-integer dimension. An image with
dimension 1.7, for instance, has more detail than a line but too many holes to be
worthy of the title two-dimensional. Fractal images contain infinite detail when
we zoom in (figure 11b). The good news is that the extraordinary detail present
in fractal images can be generated by very simple recipes.
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Figure 11. Fractal Dimension: Always More Detail When You Zoom.

The term “fractal” refers specifically to a mathematical dimension defined by
executing this zooming process very precisely. First, assume the line in figure 11
is a centimeter (cm) long. It only takes one circle of 1 cm diameter to completely
cover the line. IfI cover it with circles 1/2 cm across, I need two. Similarly, I need
17 covering circles of diameter 1/17 cm, or 1986 circles of diameter 1/1986. Since
the number of circles needed to cover the image scales is (1/diameter) to the first
power, we say that image has dimension “1.” This comes as some relief, since we
all survived geometry class knowing that lines are one-dimensional.

Now consider the complex fern in figure 11. If its total length is about ] cm,
asingle large circle will cover it. However, as we start to cover it with smaller and
smaller circles, we find that we need fewer circles than we would need if we were
trying to cover a solid square (of dimension 2). In fact, the number of circles
needed scales like (1/diameter) raised to the 1.7 power. We say, then, that the fern
has dimension 1.7, and since that dimension is not an integer, or fractional, we
call the image a “fractal.”

The study of fractal geometry becomes important to military applications of
Chaos in three main areas: image compression, dimension calculation, and basin
boundaries. In image compression, the infinite detail generated by simple sets of
fractal instructions allows mathematical instructions rather than pixel-by-pixel
values to be transmitted; the image can then be recreated by the receiver using
the instructions.

The second application, dimension calculation, is possible with time series as
well as with geometric figures; when we calculate the dimension of a sequence of
data points, we getan estimate of the minimum number of variables needed to model
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the system from which we measured the data. Often the estimate lies very close
to the number of variables needed in a model, thus saving analysts the struggle
of developing overly complex situations.

Thirdly, many systems that have two or more attractors also have two or more
basins of attraction. Very often, the boundaries between basins are not smooth
lines. Instead, the basins overlap in fractal regions where one initial condition
may lead to steady state behavior, but any nearby initial condition could lead to
completely different behavior. Consider the illustration in figure 12, the basins
of attraction for a numerical model. All the initial conditions (white areas) lead
to one kind of behavior; all the dark points lead to entirely different behavior. A
commander making decisions in such an environment will have to be
alert—small parameter changes in certain regions produce dramatic differences
in outcomes.%? For instance, the pictured decision space might simulate, on one

Figure 12. Fractal Boundaries Benween Basins of Attraction.”

axis, the number of troops available for reinforcement, while the other axis
indicates time intervals between sending in fresh troops. If the combat simulation
indicates eventual victory with a black dot, and defeat with white, commanders
would need to choose reinforcement strategies with great care in order to turn
the scenario’s outcome in their favor.
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Bifurcation. Bifurcation theory represents an entire subdiscipline in the study of
dynamical systems. I mention bifurcations here for two reasons. First, so you will
recognize the word in other references. In the context of the demonstrations thus
far, a bifurcation is simply a transition in dynamics. The faucet, for example, drips
slowly when the flow rate is low. At some higher flow rate, the drops come out
with period-2; we say the system has undergone a bifurcation from one kind of
periodicity to another. A bifurcation is a transition in system dynamics due to
a change in a control parameter.

The second reason for offering this new terminology is to highlight the
universality of bifurcation types. That is, when one system parameter is changed,
you may see subtle bifurcations or catastrophic ones, but a few classes of bifurca-
tions are common to many dynamical systems.24 Recall the discussion of transi-
tions in the night-light demonstration. The transitions came at smaller and
smaller intervals, roughly according to patterns predicted by the Feigenbaum
constant (refer to figure 8). Feigenbaum first discovered this constant through
his study of the logistic map, where transitions occur in the same pattern as in
the night-light. Overall, the most important consequence of Feigenbaum’s
discovery is that the same transitions he observed in the logistic map also appear
in many diverse physical systems.

Dense, Unstable, Periodic Orbits. Consider one last feature of the logistic map
that ultimately makes it possible for us to control chaotic systems. Chaos control
will be addressed in the next chapter; for now, we take a few steps through the
dynamics of the logistic map in order to glimpse the complicated activity on an
attractor, as illustrated in figure 13.

Suppose we set the parameter to a small value, say A = 1.8. We can start the
system with x/1] anywhere between 0 and 1, and successive iterations of the
logistic equation will always drive the value of x/n] toward 0.44, a stable, fixed
point. If we increase A to 2.75, the system still has a stable, fixed point, but that
point is now around 2/3. Raising the control parameter produces no qualitative
change in behavior. However, if we raise A slightly above 3, the system does not
settle into a fixed point but falls into a cycle of period-2. Thus, at A = 3 we see a
bifurcation from stable to periodic behavior.

Transitions come hand-in-hand with changes in stability. Any system might
have both stable and unstable behaviors. For instance, the equations governing
a pencil standing on its point have a good theoretical equilibrium one with the
center of gravity directly above the point—but we cannot stand a pencil on its
point, because that state is unstable. That is, the slightest perturbation draws the
system away from that state. On the other hand, a marble lying at the bottom of
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The parabolas trace out the logistic equation, x[n] = Ax[n] (1-x[n]).
The diagonal line holds the current population value, x[n/, until we iterate again,
drawing a new vertical line to the parabola.
These ‘‘web diagrams” illustrate the long-term behavior of iterates.

Figure 13. Graphical Iteration of the Logistic Map.”

Reproduced with the kind permission of Springer-Verlag New York, Inc., after H.O.
Peitgen/H. Jiirgens/D. Saupe, Chaos and Fractals (figures 1.35 and 1.36, page 59), © 1992.
Any further reproduction is strictly prohibited.

a bowl stays there, because if the marble is perturbed slightly in any direction, it
just rolls back.?

The important feature for us hides in the chaotic trajectory “smeared out” in
figure 13, when A = 4. Inside that smear—the attractor for this chaotic sys-
tem—many periodic cycles still exist; on paper, that is. The fixed point, for
instance, still lives at the place on the graph where the parabola intersects the
diagonal. However, that point is unstable, so a trajectory can never approach it.
Similarly, we can calculate trajectories of period-2, period-3, every possible
period. In fact, there are infinitely many unstable, periodic trajectories woven
through the attractor, woven thickly in a way mathematicians call dense. That
means that every area surrounding every point on the attractor is crowded with

these “repelling,” unstable, periodic trajectories.
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So, on one hand, it is not useful to locate any of these periodic behaviors,
because all these trajectories are unstable. On the other hand, recent experiments
have demonstrated ways to force the system to follow one of these periodic
behaviors. This is the power of Chaos control; as we will see later, the density of
these trajectories is the property that makes this control possible.

So How Do We Define Chaos?
A chaotic system MUST be:

* bounded;

* nonlinear;

* non-periodic;

* sensitive to small disturbances; and,
* mixing.

This is, perhaps, not so much a definition as it is a list of necessary ingredients
for Chaos in asystem. That is, without any one of these properties, a system cannot
be chaotic. I believe my list is also sufficient; therefore, if a system has all these
properties, it can be driven into Chaos.

Also, a chaotic system usually has the following observable features:

¢ transient and limit dynamics;

¢ parameters (control knobs);

¢ definite transitions to and from chaotic behavior; and
¢ attractors (often with fractal dimensions).

What is the significance of these properties? Measurements of transient and limit
dynamics in a system provide new information not available to us before the advent
of Chaos theory. Our comprehension of the role of parameters in system dynamics
offers opportunities for new courses of action, to be described in subsequent chapters.
Finally, the common properties of system transitions and attractors suggest new
expectations of system behavior, as well as new strategies for coping with those expec-
tations. For other, more detailed characteristics of chaotic data—such as exponen-
tially decaying correlation and broad power spectra—you can refer to any one of the
texts described in chapter V, “Suggestions for Further Reading.”

Random. You may look at the above definition of Chaos and wonder if the
processes we call “random” have those same properties. For those interested in
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more detail, a discussion of one definition of “random” appears in the appendix.
However, I will pause here to focus on one difference between random and chaotic
dynamics. Please be aware that we are ignoring some large issues debated by Chaos
analysts. Some argue, for instance, that the kind of dynamics we now call
“random”—Ilike a roulette wheel—simply come from chaotic systems, with no
random variables, where we just do not know the model. In other cases, “noise,”
or random imperfections in our measurements—like radio static—may come
from Chaos that happens on a scale we have not yet detected. For our purposes, the
primary feature distinguishing chaotic from random behavior is the presence of an attractor
that outlines the dynamics towards which a system will evolve.?” Existence of such an
attractor gives us hope that these dynamics are repeatable.

In the water-drop experiment, for example, if results were random, the experi-
ment would not be repeatable. However, if you and I both run this test and I list
my experimental parameters for you, such as nozzle diameter and flow rate, the
key features of this system’s dynamics will be replicated precisely by our two
separate systems. Slow flow is always periodic. The system undergoes period
doubling (period-2, then period-4, . . .) on the way to Chaos, as we increase the
flow rate. Most important, for high flow rates, your chaotic return map for time
differences between drops will produce a smear of points nearly identical to mine.
If the system were exhibiting random behavior, these global features would not
be reproducible.

The Chaos “Con”

Before leaving this review of basic Chaos vocabulary, we need to examine the
common mistakes and misinterpretations that appear in many papers on the
subject. The sum of these errors constitutes the Chaos “con,” the unfortunate
collection of misleading publications that tend to crop up when writers investi-
gate new topics. The con may come from well-intentioned authors who are new
to the subject but miss some key concepts because they are constrained by time.
Other cons may come in contract proposals from cash-starved analysis groups
who might try to dazzle their readers with the sheer volume of their Chaos
vocabulary. It is very important to avoid the con, both innocent and intentional,
but most of all, don’t con yourself by making any of the following common errors.

“Chaos is too difficult for you.” Don’t let anyone fool you: if you finished college,
you can follow the basics of Chaos. Be suspicious of anyone who tries to tell you
that the general concepts are beyond your grasp. Some authors will disguise this
false claim with subtle references to the “mysteries of Chaos” or “mathematical
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alchemy” or other vocabulary designed to intimidate their readers. Don’t believe
it, and don’t pay these folks to teach you Chaos. You can learn it—just remember
to take your time.

“Linearis. . . .” Remember that some writers will oversimplify the definition of
linearity by waving their pen quickly at some phrase like “output is proportional
to input.” That comment is true only if a system’s output and input are very
carefully defined. Never forget that pendulums, swings, and springs are all linear
systems! Make sure the author’s definition of linearity admits these three impor-
tant physical systems.

Bifurcation. What exactly bifurcates? Trajectories don’t bifurcate, as some authors
have claimed. A single trajectory can do only one thing. We may have a limited
capacity to predict that behavior, but—as a light bulb can be only on or off at any
fixed time—a single system can evolve through only one state at a time. Remem-
ber that a bifurcation is a qualitative change in system behavior that we observe
as we change parameter settings. The bifurcation, or branching, takes place on
plots of parameter values.

“Complicated systems must be chaotic.” The fact that a system is complicated
or has many components does not necessarily mean that it allows Chaos. For
instance, many large systems behave like coupled masses and springs, whose
linear equations of motion are completely predictable. Indeed, an old-fashioned
clock is extremely complicated—but its very essence is to be predictable. Simi-
larly, other large systems include reliable control mechanisms that damp out
perturbations and do not permit sensitive responses to disturbances. Such sys-
tems do not exhibit Chaos.

“We need many variables for Chaos.” Many of the same authors who claim that
big systems must be chaotic also propagate the fallacy that simple systems cannot
exhibit Chaos. Nothing could be further from the truth. In fact, the power of
Chaos theory is that the simplest interactions can generate dynamics of profound
complexity. Case in point: the logistic map produces every symptom of Chaos
described in this paper.

“Butterflies cause hurricanes.” When Edward Lorenz presented his findings of
SICin weather systems, he described The Butterfly Effect,theideathat the flapping
wings of a butterfly in one city will eventually influence the weather patterns in
other cities. This phenomenon is a necessary consequence of the sensitivity of
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fluid systems to small disturbances. However, the butterfly effect of ten gets fuzzy
in the translation. Be wary of authors who suggest that a butterfly’s flap in
California will become amplified somehow until it spawns a hurricane in Florida.
Believe it or not, several often-cited reports make this ridiculous claim. Make no
mistake, if a weather system has enough energy to produce a hurricane, then the
storm’s path will be influenced by butterfly aerodynamics across the globe.
However, the system does not amplify small fluid dynamics; rather, it amplifies
our inability to predict the future of an individual trajectory in phase space.

“Chaos” versus “chaos.” One of the first signals of a weak article is when the
author inconsistently mixes comments on mathematical Chaos and social chaos.
Unless we can distinguish between the two, we cannot get past the metaphors of
Chaos to practical applications. As will be explained below, the existence of Chaos
brings guarantees and expectations of specific phenomena: attractors; complex
behavior from simple interactions; bounded, mixing dynamics; and universal
transitions—from stable to erratic behavior—that make Chaos control possible.

The worst consequence of the Chaos con is that the well-intentioned reader
may not discern the important results of Chaos theory. These results highlight
the common characteristics of chaotic dynamics, a useful template for the kinds
of dynamics and applications we should expect in a chaotic system. A review of
the most important results follows here; a discussion of their applications con-
stitutes the remaining portion of this essay.

Tools of Chaos Analysts

One of the most important outcomes of the study of Chaos theory is the
extraordinary array of tools that researchers have developed in order to observe
the behavior of nonlinear systems. I cannot emphasize enough that these tools
are not designed solely for simulated systems. We can calculate the same informa-
tion from experimental time series measurements when there is no model avail-
able, and often when we can measure only one variable in a multi-variable system!
Moreover, decision makers need the skills to differentiate random behavior and
Chaos, because the tools that allow us to understand, predict, and control chaotic
dynamics have no counterpart in random systems.

For the military decision maker who can use these tools, two issuesstand out:

What are the preferred tests for deciding if a system is chaotic?
How can we tell the difference between randomness and Chaos?

41



The Newport Papers

The analytical tools used by Chaos analysts answer these questions, among many
others. Ourbriefsummary ofthemost basic tools begins with an important reminder.
We always need to begin our analysis by answering two questions: what is the system,
and what are we measuring? For example, recall the dripping faucet system, where
we observe the dynamics not by measuring the drops themselves but by measuring
time intervals between events. Only after we answer those two questions should we
move on to consider some of the qualitative features of the system dynamics:

e What are the parameters? Can we control their magnitude?

¢ Does the system perform many repetitions of its events?

¢ Are there inherent nonlinearities or sources of feedback?

¢ Does the phase space appear to be bounded? Can we prove it?

¢ Do we observe mixing of the phase variables?

When we have a good grasp of the general features of a system, we can begin to
make some measurements of what we observe. We should note, however, that our
aim is not merely to passively record data emitted from an isolated system. Very
often our interest lies in controlling that system. In an article on his analysis of
brain activity, Paul Rapp summarizes:

Quantitative measures [of dynamical systems] assay different aspects of behav-
ior, and they have different strengths and weaknesses. A common element of
all of them, however, is an attempt to use mathematics to reconstruct the system
generating the observed signal. This contrasts with the classical procedures of
signal analysis that focus exclusively on the signal itself. %8

Therefore, keep in mind that the tools presented here are not used for observation
only. They provide the means to re-create a system’s rules of motion, to predict that
motion over short time scales, and to control that motion.

Depicting Data. We have already encountered most of the basic tools used for
observing dynamical systems. The two simplest tools—time series plots and phase
diagrams—display raw data to give a qualitative picture of the data’s bounds and
trends. A time series plot graphs a sequential string of values for one selected
phase variable, as in the plot of population variation for the logistic map in figure
10. Sequential graphs give us some intuition for long-term trends in the data and
for the system’s general tendency to behave periodically or erratically.

Phase diagrams trace the dynamics of several phase variables at the same time,
as the Lorenz attractor does in figure 9. The first piece of information apparent
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from a good diagram is the nature of the system’s attractor. The attractor precisely
characterizes long-term trends in system behavior—how long the system spends
in any particular state. This information translates directly into probabilities.

Attractors and Probabilities. As a demonstration of translating attractor dynam-
ics into probabilities, consider the chaotic trajectories of the logistic map shown
in figure 13. The smear of trajectories makes it obvious that the population x/n]
takes on most of the values between 0 and 1; but is the smear of values evenly
distributed across that range? One way to find out is to build a quick histogram:
divide the interval from 0 to 1 evenly into a thousand subintervals; keep a count
of every time the evolving population x/n] visits each subinterval. Figure 14
shows the results of such a calculation; we see from the figure that the trajectory
of the logistic equation spends more time closer to 0 and 1 than it does to other
values. To illustrate, if this equation modeled the number of troops assigned to a
certain outpost, a distribution like this would tell a commander that the site tends
to be fully staffed or nearly vacant, with noticeably less probability of other
incremental options.

Probability information like this has several immediate uses. First, of course,
are the probability estimates that commanders require to prioritize diverse
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Figure 14. Distribution of Logistic Map Dynamics.’
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courses of action. Second, analysts can use this information to compare models
with real systems, to gauge how well the distribution of a simulated system relates
to real data. Third, since many simple chaotic models use non-random formulas
to generate distributions of behavior, the resulting distributions can be used in
various simulations to replace black-box random number generators. We will
explore these applications in greater detail in chapter IV.

Attractors and Sensitivity. As a single trajectory weaves its way through its
attractor, we can also calculate local Lyapunov exponents (see pages 30-31) at the
individual points on the attractor as well as an average Lyapunov exponent for
the entire system. This exponent measures how sensitive trajectories are to small
disturbances. Therefore, details about these exponents can guide decision makers
to particular states where a system is more or less vulnerable to perturbation. The
same exponents can also be calculated for various ranges of parameter settings so
that commanders can discern which variables under their control may produce
more predictable (or unpredictable) near-term outcomes.

Embedding. However directly we might calculate system features like attractors
and Lyapunov exponents, how can we apply these tools to a real system where we
have no descriptive model? Suppose we have a complicated system—Ilike the
dripping faucet—that gives us a time series with only one variable. What can we
do?

The answer comes from a powerful technique known as embedding. Very
simply, we can start with a sequence of numbers in a time series, and, instead of
isolating them as individual pieces of data, we can group them in pairs. The
resulting list of pairs is a list of vectors that we can plot on a two-dimensional
graph. We can also start over and package the data in groups of three, creating a
list of vectors we can plot in three-dimensions, and so on. This process embeds a
time series in higher dimensions and allows us to calculate all the features of the
underlying dynamics from a single time series. The suggested reading list in
chapter V offers several sources that discuss this technique in detail.

Embedding is a powerful instrument for measurement because by embedding
atime series we can calculate the fractal dimension of a data set. Since random data
have theoretically infinite dimensions, and many chaotic systems have smaller
dimensions, this is one of the first tools that can help us distinguish noise from
Chaos.

Even more important, the dimension of a time series measures the amount of
detail in the underlying dynamics and actually estimates the number of inde-
pendent variables driving the system. So, when Tagarev measures a fractal
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dimension of 2.9 for a time series of aircraft sorties (see figure 2), he presents
strong evidence that the underlying system is not random but that it may be driven
by as few as three key independent variables.

Recent studies of embedded time series also have uncovered ways to use
embedding as a vast, generalized grid through which we can interpolate to
approximate a system’s dynamics. In this way, researchers have made tremendous
strides in predicting the short-term behavior of chaotic systems. More details of
these results will be discussed in chapter IV.

And Much, Much More. . . . These tools represent only a small sample of the
standard analytical tools currently in use. Consult the references highlighted in
chapter V to find complete discussions of these and other tools, such as return
maps, Poincaré sections, correlations, Fast Fourier Transforms, and entropy
calculations. These tools constitute the primary sources of the new information
that Chaos theory brings to decision makers.

Results of Chaos Theory

Let us gather together the theoretical results scattered through these first two
chapters. First, I will summarize the common features of chaotic systems. Then,
I will review what it means for us to have Chaos in our systems.

Here is a brief snapshot of the common characteristics of Chaos, a sample of what
to expect in a chaotic system. Most of these characteristics have been highlighted in
ourearlier examples. Not much is needed in asystem in order for Chaosto be possible.
In most physical systems, whose smooth changes in time can be described by
differential equations, all that is needed are three or more independent variables and
some nonlinear interaction. In difference equations, like the logistic map, where
change occurs at discrete time intervals, all that is required is a nonlinear interaction.

Most systems have accessible parameters, system inputs we can control to adjust
the amount of energy in the system. We should expect systems to have qualita-
tively different behaviors over different parameter ranges.

Surprisingly common transitions, from stable equilibria to periodicity and
Chaos, occur in completely unrelated systems.

Influential dynamics occur on many different scales. For instance, the cloud
cover that concerns forces during a combat operation is affected by the activity
of butterflies across the globe. To understand the larger scale dynamics, we may
need to consider the smaller scales.

Attractors draw trajectories towards themselves. So, if an attractor exists (in an
isolated system), and the state of a system is in that attractor’s basin, the system
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cannot avoid proceeding toward the attractor. Dynamics on the attractor repre-
sentglobal trends of the underlying system, and they set global bounds on system
behavior. The density of trajectories on the attractor also reveals the relative
distribution of behavior.

Because of the trajectory mixing that takes place on attractors, the attractors
are immersed in dense weavings of unstable periodic trajectories. The presence
of these potential periodic behaviors makes Chaos control possible.

The universal nature of these properties helps us answer a somewhat bigger
question:

What does it mean to me to have Chaos in my system?

One consequence of understanding the results of Chaos theory is that if we are
confident that a system can behave chaotically, then we know that it must have all
the properties of Chaos. Some of these properties are hard to prove, but we “get
them for free” if we know the system is chaotic. In particular, if a system is known
to be chaotic, then we know, for example, that any models of that system must
include nonlinear terms. We also know we have avenues to control the system;
that is, any attractor for that system is densely woven with unstable periodic
trajectories toward which we can drive the system (see the discussion of Chaos
control in chapter IV).

In a 1989 Los Alamos report, David Campbell and Gottfried Mayer-Kress
summarized their “lessons of nonlinearity”:

1. Expect that nonlinear systems will exhibit bifurcations so that small
changes in parameters can lead to qualitative transitions to new types of
solutions.

2. Apparently random behavior in some nonlinear systems can in fact be
described by deterministic non-random chaos.

3. Typical nonlinear systems have muitiple basins of attraction, and the
boundaries between different basins can have incredibly complicated fractal
forms.

4. Our heightened awareness of the limits 10 what we can know may lead to
more care and restraint in confronting complex social issues.

5. Thewuniversality of certain nonlinear phenomena implies that we may hope
to understand many disparate systems in terms of new simple paradigms
and models.

6. The fact that Chaos follows from well-defined dynamics with no random
influences means that in principle one can predict short-term behavior.
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7. The dense paths of trajectories on an attractor make Chaos control
possible.3 L

To this list I would add that a basic understanding of Chaos brings not only
limits to what we can know, but also new information about the dynamics that
are possible. In the next chapter I outline some common military systems where
one can expect to see Chaos. Then, in chapter IV we will be ready to learn how
to apply these results.
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Part Two

Who Needs Chaos Theory?

Applications

Big whorls have little whorls
Which feed on their velocity,

And little whorls have lesser whorls
And so on to viscosity.

Lewis F. Richardson’?

Thank heaven
For little whorls.

-not quite Maurice Chevalier
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Expect to See Chaos

Specific Military Systems and Technology

Chaos Theory does not address every military system. However, while some
authors still treat Chaos as a fashionable collection of new cocktail vocabu-
lary, Chaos is neither a passing fad nor a mere metaphor. The extensive
applications of Chaos to military systems make it imperative for today’s decision
makers to be familiar with the main results of the theory. This chapter is a quick
review of the typical military technologies wherein one sihiould expect to see
chaotic dynamics. The chapter is broad by intent, since many more systems
appear in chapter IV, where we start to apply Chaos results. The present discussion
concludes with a necessary review of the theory’s limitations as well as a summary
of the implications of the pervasiveness of Chaos.

In the previous chapter we showed how little is needed to generate chaotic
dynamics. If a system changes continuously in time—Ilike the motion of vehicles
and missiles—only three independent variables (three degrees of freedom) and
some nonlinearity are required for chaotic dynamics to be possible. If a system
changes in discrete jumps—daily aircraft sortie rates or annual budget re-
quests—then any nonlinearity, as simple as the squared term in the logistic map,
may provide aroute to Chaos. These minimum requirements, present in countless
military systems, do not guarantee chaotic dynamics, but they are necessary
conditions.

Other common characteristics that make a system prone to Chaos include
delayed feedback and the presence of external perturbations, or “kicks.” An
enormous number of military systems exhibit these features. One should expect
Chaos in any system that includes feedback, fluids, or flight. The power of Chaos
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theory lies in its discovery of universal dynamics in such systems. As this chapter
proceeds from specific systems to general technologies, the reader should be alert
for the similarities in diverse military systems.

Naval Systems. The Thompson and Stewart text on nonlinear dynamics includes
a thorough discussion of the chaotic behavior of a specific offshore structure.>?
It reports a case history in which chaotic motions were identified in a simple
model of a mooring tower affected by steady ocean waves. Mooring towers are
being used increasingly for loading oil products to tankers from deep offshore
installations. These buoys are essentially inverted pendulums, pinned to the
seabed, and standing vertically in still water due to their own buoyancy. The
concern in this “kicked” pendulum system is the potentially dangerous chaotic
activity that occurs when a ship strikes the mooring. The number of impacts per
cycle, which can be high, is an important factor to be considered in assessing
possible damage to the vessel.

A 1992 Office of Naval Research report summarizes a series of studies identifying
the sources of chaotic dynamics in other ocean structures: a taut, multi-point cable
mooring system; a single-anchor-leg articulated tower; an offshore component
installation system; and a free-standing offshore equipment system.34 The author
identifies key nonlinearities and analytically predicts transitions and stabilities of
various structural responses. At the time of the report, experiments were still
underway to verify the analysis. Ultimately, better ways to control these systems and
to enhance current numerical models for these systems will be developed.

The naval applications of Chaos theory are not restricted, of course, to station-
ary structures. A recent graduate of the Naval Postgraduate School reports the
use of nonlinear dynamics tools to control the motion of marine vehicles.® In
this interesting application of Chaos results, the system itself does not display
chaotic dynamics. However, the knowledge of common transitions away from
stable behavior allows the author to improve the trajectory control of ships and
underwater vehicles.

Information Warfare. Asyetnebulously defined, the subdiscipline of military science
known as Information Warfare certainly embraces a number of electronic systems
subject to chaotic behavior. In many instances, chaotic dynamics contribute to the
design of entirely new systems with capabilities made possible by Chaos theory. One
large field of application is digital image compression. Simple equations that generate
complicated distributions allow pictures to be expressed as compact sets of instruc-
tions for reproducing those picturr:s.36 By transmitting the instructions instead of
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all of the individual pixel values, thousands of times more information can be sent
through the same transmission channels in a given period of time.

On large images and color images, these fractal compression techniques perform
better than other current compression techniques.3 "In 1991, the decompression speed
for the fractal method was already comparable to standard industry techniques. Even
if this process does not become the new standard for real-time communication, it
will probably drive the performance standards for other technology developments.
Thus, this powerful technology is already making its way into military mapmaking
and transmission as well as into real-time video links to the battlefield. Other
potential applications will be discussed in the next chapter.

Two additional features of electronic Information Warfare make it ripe for
Chaos applications. First, the high volume and speed of communication through
computer networks include the best ingredients of a recipe for Chaos: modular
processes undergoing endless iteration; frequent feedback in communications
“handshaking”; and frequencies (on many scales) faster than the time it takes
most systems to recover between “events” (messages, transmissions, and back-
ups). Second, a likely place to anticipate Chaos is anywhere the digital computer
environment approximates the smooth dynamics of real systems. Many iterated
computations have been shown to exhibit Chaos even though the associated
physical systems do not.

Assembly Lines. A recent book on practical applications of Chaos theory
presents a detailed explanation of where to expect and how to control chaotic
dynamics in automatic production lines.?® It focuses on a few subsystems:
vibratory feeding, part-orienting devices, random insertion mechanisms, and
stochastic (random) buffered flows. Possible military applications include robotic
systems for aircraft stripping and painting and automated search algorithms for
hostile missiles or ground forces.

Let us conclude this introduction to chaotic military systems by recalling the
list of technologies in the 1991 Department of Defense Critical Technologies
Plan.*’ This time, though, we can note the most likely places where these
technologies overlap with the results of Chaos theory:

1. Semiconductor materials and microelectronic circuits—they contain all
kinds of nonlinear interactions; semiconductor lasers provide power to
numerous laser systems whose operation can destabilize easily with any
optical feedback into the semiconductor “pump” laser.

2. Software engineering—refer to the discussion of Information Warfare,
with feedback possible at unfathomable volumes and speeds.
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10.
11

12.

13.
14.

1.
16.

17.

18.
19.

20.

21.

High-performance computing—see items | and 2.

. Machine intelligence and robotics—these require many varieties of

control circuitry and feedback loops.

. Simulation and modeling—chaotic dynamics are being recognized in

numerical modelsthatwe have used for twenty years; look for more details
in the next chapter.

Photonics—laser and optical circuitry may be subject to Chaos at quantum
and classical levels of dynamics.

Sensitive radar—this often combines the instabilities of electronics,
optics, and feedback.

Passive sensors—recall our night-light experiment.

Signal and image processing—fractals allow new advances in image
compression.

Signature control—stealth technology, e.g., wake reduction in fluids.
Weapon system environment—this will be addressed in the next chapter’s
discussion of the nonlinear battlefield and “fire ant” warfare.

Data fusion—attractors and Lyapunov exponents can summarize new
information for military decision makers.

Computational fluid dynamics—fluids tend to behave chaotically.

Air breathing propulsion—engines consume fluids and move through
other fluids.

Pulsed power—power—switching requires circuitry with fast feedback.
Hypervelocity projectiles and propulsion—these will include guidance,
control, and other feedback systems.

High energy density materials—they can undergo chaotic phase
transitions during manufacture.

Composite materials—these pose the same manufacturing issues as item 17.
Superconductivity—superconductor arrays (Josephson junctions) are a
classic source of Chaos.*!

Biotechnology—living organisms are full of fluids and electricity,
and Chaos.

Flexible manufacturing—this may include automated processes prone to
Chaos.

Limitations of Chaos Theory

It may seem difficult,after the previous section, to imagine a military system where
we will not encounter Chaos. Let us, then, do a briefreality check to indicate some
systems that do not seem to benefit from the results of Chaos theory.
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In general, Chaos will not appear in slow systems, i.e., where events are
infrequent or where a great deal of friction dissipates energy and damps out
disturbances. For instance, we should not expect Chaos theory to help us drive a
jeep or shoot asingle artillery piece. (On the other hand, the theory may eventually
guide our decisions about how to direct convoys of Humuvees or how to space the
timing or position of many projectile firings.) Similarly, Chaos theory offers no
advice on how to fire a pistol, though it may pertain in the design of rapid-fire
weapons.

Theoretical Chaos results are seriously constrained by the need for large
amounts of preliminary data. To make any analysis of time series, for instance,
we can make reasonable comments based on as few as one hundred data points;
but the algorithms work best with a thousand or more. Therefore, even if we
are able to design reliable decisions tools for battlefield use, models that require
hundreds of daily reports of enemy troop movements may be useless in a
thirty-day war. While some hope remains for the prospects of increasing the speed
and volume of simulated battlefield information, the mechanisms for using such
simulations for real-time combat decisions remain to be developed.

One may encounter scenarios and systems with erratic behavior where a source
of Chaos is not immediately evident. In this event, it may be necessary to examine
different scales of behavior. For example, Chaos theory does not help study the
flight of a single bird, free to choose where and when to fly. However, there is
evidence of Chaos in how groups of birds flock and travel together.43

Implications

The pervasiveness of chaotic dynamics in military systems forcesustobeaware
of sources of instability in system designs. We need to develop capacities to protect
our own systems from unwanted fluctuations and to impose destabilizing dynam-
ics on enemy systems. However, the next chapter will also present ways we can
constructively exploit chaotic dynamics, to allow new flexibility in control proc-
esses, fluid mixing, and vibration reduction. We must remain alert for new
perspectives on old data that were previously dismissed as noise. Perhaps more
importantly, the universal results of Chaos theory open the door for new strate-
gies—ideas we will discuss in the chapter ahead.

55






v

How Can We Use the Results?

Exploiting Chaos Theory

One of the great surprises

to emerge from studies of nonlinear dynamics
has been the discovery that stable steady states
are the exception rather than the rule.

Siegfried Grossman and
Gottfried Mayer-Kress44

A[ this point the reader should have some intuition for the common features
of Chaos. An enormous number of systems exhibit chaotic dynamics;
many of these systems are relevant to military decision making. But how can we
use Chaos to make better decisions or design new strategies? Even if we accept
the idea that Chaos can be applied to strategic thinking, shouldn’t we leave this
high-tech brainstorming to the analysts?

Absolutely not! As Gottfried Mayer-Kress points out, if we fail to learn the
basic applications of Chaos theory, our naiveté could lead to unfortunate conse-
quences. We may, for example, fall into the trap of thinking that successful
short-term management allows total control of a system; we may have unneces-
sary difficulty in making a diagnosis from available short-term data; or we may
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apply inappropriate control mechanisms that can produce the opposite of the
desired effect.*

This chapter lays out practical results on how Chaos theory influences a wide
range of military affairs. Sections of this chapter present specific suggestions on
howtoapply theseresults. Although the structure of each section may suggest that
each concept or technique operates independently, like an isolated item in a tool
kit, the application of Chaos theory unifies many of the previous results.

The chapter opens with a review of some Chaos results that are consistent with
past thought and with good common sense. The meat of the chapter, of course,
is a discussion of the new tools and options available to decision makers through
the results of Chaos theory. Then, an introduction to fractals begins a section on
applications that take particular advantage of the fractal geometries that appear
in many chaotic systems. Finally, the chapter closes with a discussion of other
issues, including the difficulties posed by making decisions about systems that
include human input and interactions.

Common Concerns

We should pause to consider the understandable concerns and objections of
those who may be suspicious of “all this Chaos business.” It is quite tempting to
dismiss Chaos as an impractical metaphor, especially since many authors present
only the metaphors of Chaos. Some toss around the Chaos vocabulary so casually
that they leave no hope for practical applications of the results. Margaret
Wheatley, for instance, offers Chaos only as a metaphor, hiding behind the
argument that “there are no recipes or formulae, no checklists or advice that
describe ‘reality’ [precisely].”46 While it certainly is the case that no formula can
track individual trajectories in a sensitive chaotic system, especially with human
choice involved, many patterns are evident, many means of observation and
control are available, and the trends of chaotic dynamics are sufficiently common
that one can and should expect specific classes of behaviors and transitions in
chaotic systems. Additionally, and unfortunately, many well-written Chaos texts
target a highly technical readership; their useful results are not adequately
deciphered for a larger community of potential users.

All the same, we already know that human activity is sensitive to small
disturbances, that small decisions today can have drastic consequences next week,
and that troops—like water drops—need rest between events. It is simply not
obvious that there is anything new in the Chaos field. Why is it worth everybody’s
time just to learn a new vocabulary to describe the same old thing we have been
doing for decades, or in some cases for centuries? Moreover, suppose we agree
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that there is something new here. How can we use Chaos results? How can Chaos
help us prioritize our budget or defeat an enemy?

Peter Tarpgaard offers a fine analogy that answers some of these concerns and
offers a glimpse of the insight that Chaos theory brings to decision makers.
Imagine what Galileo’s contemporaries commented when they saw him depart
for Pisa with a small ball and alarge ball in his bag. “What’s the use? You’re going
to climb the Leaning Tower, and drop the things, and they’re going to fall. We
know that already! You’re not showing us anything new. Besides, even if it is new,
how can we use it?”

Now consider the advance in knowledge when Newton derived precise expres-
sions for the force of gravity. Among other things, Newton’s laws of motion
identified specific behaviors to expect when various objects are subjected to
gravity’s influence. By describing gravity’s effects, Newton gave us the power to
model them—if only approximately—and to assess their impact on various
systems. In particular, we now know exactly how fast an object will fall, and we
can figure out when it will land. With this knowledge, we can also predict and
control certain systems.

Chaos theory brings comparable advances to decision makers. A number of
researchers have developed techniques and tools that allow us to apply Chaos
theory in physical and human systems; but these efforts are very recent, and a
great deal of thought and study remains to be done. Enormous research questions
are now open; several of these are mentioned in the following pages.

Something Old, Something New

Various consequences of Chaos theory were recognized long before Lorenz
uncovered the influence of nonlinearity in fluid dynamics. This lends some
credibility to the results; as Clausewitz tells us, we need to compare new theories
with past results to ensure their consistency and relevance. Many familiar topics
in military thought disclose a relationship with Chaos theory. For example, the
U.S. Army Manual FM 100-5 holds: “In the attack, initiative implies never
allowing the enemy to recover from the initial shock ofthe attack.”* This general
strategy follows naturally from our observation of dripping faucets: Chaos results
when the system is not allowed to relax between events. Similarly, Marine Corps
doctrine specifically discusses the advantage of getting “inside” an opponent’s
“O0DA” (Observe-Orient-Decide-Act) loops in order to decrease the appropri-
ateness—and therefore the effectiveness—of the enemy’s acts. The Marine Corps
manual titled Warfighting (FMFM-1) involves many references to the conse-
quences of sensitivity to current states and the unreliability of plans:
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We have already concluded that war is inherently disorderly, and we cannot expect
to shape its terms with any sort of precision. We must not become slaves to a plan.
Rather, we attempt to shape the general conditions of war; we try to achieve a certain
measure of ordered disorder. Examples include:

... [channeling] enemy movement in a desired direction, blocking or delay-
ing enemy reinforcements so that we can fight a piecemealed enemy rather
than a concentrated one, shaping enemy expectations through deception so
that we can exploit those expectations. . . .

We should also try to shape events in such a way that allows us several options so
that by the time the moment of encounter arrives we have not restricted ourselves
to only one course of action.*

Likewise, as Michael Handel observed about the analysis of counterfactu-
als—alternative histories that might have occurred if key figures had made
different choices—an important question is: how far can we carry an analysis of
alternatives that were not actually pursued? He argued that the further ahead we
consider, the less precision we should attempt to impose. In other words, the
further we carry our counterfactual musings, the less reliable we render our
analysis.49 This is an expression of sensitivity to initial conditions, correctly
applied to historical analysis.

We can see, then, that some of the consequences of Chaos theory do not present
new findings for strategic thought. However, it is reassuring that these prelimi-
nary observations of Chaos theory are consistent with educated common sense
and the conclusions of earlier researchers and thinkers. The mark of a good
scientific hypothesis is that it adequately explains well understood phenomena
and, additionally, it accounts for phenomena that was anomalous in (or unantici-
pated by) the hypothesis it is superseding.

So What's New?

The applications presented in this chapter concentrate on methods, results,
tools, and traits of dynamical systems that were not recognized, or even feasible,
only thirty years ago.

The fact that deceptively simple-looking functions and interactions can pro-
duce rich, complicated dynamics constitutes a genuinely new insight. This
insight grew in one case from the work of biologists’ simple population models,
like logistic maps, which were analyzed in greater detail by mathematicians. As
a result, it was discovered that complex dynamics and outcomes do not have to
come from complex systems. Apparent randomness and distributions of behavior
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can be produced by very simple interactions and models. In another case,
Edward Lorenz discovered that our difficulty in predicting weather (and many
other chaotic systems) is not so much a matter of the resolution of the
measurements as it is of the vulnerability of the system itself to small pertur-
bations. In fact, global weather is so sensitive that even with a constellation
of satellites measuring atmospheric data at one-kilometer increments across
the entire globe, we could improve our long-range weather forecasts only from
five days to fourteen days.50

So don’t fire your meteorologists or your analysts! Simply to expect and
recognize Chaos in so many real systems is progress enough. The best news is
that many tools are available to understand and control chaotic systems. The tools
of Chaos theory offer hope for discerning the key processes that drive erratic
patterns such as the aircraft loss data shown in figure 2. .2 Crutchfield highlights
the importance of nonlinearity in developing those tools:

[The] problem of nonlinear modeling is: Have we discovered something inour data
or have we projected the new-found structure onto it?. .. The role of nonlinearity
in all of this . . . is much more fundamental than simply providing an additional
and more difficult exercise in building good models and formalizing what is seen.
Rather it goes to the very heart of genuine discovery.

A system’s sensitivity often can be quantified and an estimate offered about
how long predictions are valid. Only very recent advances in computers allow
repeated measurements of such quantities as fractal dimensions, bifurcations,
embeddings, phase spaces, and attractors. The results of these measurements are
the information needed to apply the theoretical results. In this way, dynamical
systems animate innumerable phenomena that have gone unmeasured until now;
decision makers who are aware of the tools available to them can better discern
the behavior of military systems.52

HOW TO APPLY

While the results of Chaos theory improve our perspective of dynamics in
military systems, the practical applications of Chaos go well beyond simple
analogy. To highlight this point, the discussion of Chaos metaphors is postponed
to the end of this chapter. The chapter focuses initially on specific processes,
examples, and cases, with suggested insights and uses for the analytical tools
presented earlier. Considering the applications of these results in one’s own
systems, it should be remembered that sometimes chaotic dynamics may be
desirable, while at other times periodicity or stable steady states may be sought.
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In other instances, one may want simply to influence the unpredictability in a
system: increasing it in the adversary’s system, decreasing it in one’s own.

Feedback

The results of Chaos theory help us to:

¢ know what transitions to expect when we add feedback to a system;

¢ suggest ways to adjust feedback;

* appreciate the wide range of dynamics generated by feedback in real systems.

There is nothing new about a call for awareness of feedback in physical and
social systems. Many commentators, for instance, have remarked on the impact
of real-time media reporting of combat events faster than DOD decision loops can
operate. Similarly, one may consider the feedback imposed on an organization by
requirements for meetings and reports. How often do these diagnostics “pulse”
an organization? Yearly, monthly, weekly, daily? Do supervisors require periodic
feedback, or do they allow it to filter up at will? Is the feedback in the organization
scheduled, formatted, free-flowing, “open door,” or a mixture of these? How
intense is this occasional “perturbation”?

These are familiar issues for managers and commanders, but a grasp of
chaotic dynamics prompts one to answer these questions with other equally
important questions. What mixture of structured and free-form feedback
works best in a particular system? What would happen if the frequency of
meetings and reports were increased or decreased? What rransitions in system
performance should be expected? At what point, for instance, do too many
meetings of an office staff generate instabilities in the organization? Or, in a
crisis situation—theater warfare, rescue, natural disaster—what charac-
teristics of the “system” make it more appropriate to assess the system every
day, or every hour? This kind of idea was explored during a series of Naval
War College war games. In these games, one out of every three messages was
arbitrarily withheld from the commanders, without their knowledge. As a
result, observers noted better overall performance in command and control
processcs.53

An awareness of the need for, and the sensitivity of, feedback in a system will
make one more alert to the possible consequences of altering the feedback. Here,
the biggest benefit of Chaos theory seems to be transitions that should be expected
as various parameters of system feedback are adjusted. (Of course, this may or
may not have validity in the real world.)
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For example, if meetings or reports cause stress on an organization, several
obvious parameters—frequency of feedback, length of reports, amount of detail
or structure required in those reports, length of meetings, number of people
involved in the meetings, and so forth—can be adjusted. Some experience with
dynamical systems suggests thatsmall changes or careful control of these parame-
ters may suffice to stabilize some aspect of the system’s performance. One new
expectation we learn from chaotic systems is that small changes in control
parameters can lead to disproportionate changes in behavior. Again, the idea of
manipulating meeting schedules and reporting cycles is not new. However, the
expectations for ranges of behavior and transitions between behaviors are new.

As a hypothetical illustration, suppose you observe changes in an adversary’s
behavior based on how often your surface vessels patrol near his territorial waters.
Letus assume that your adversary bases no forces along the coast when you leave
him alone, but he sets up temporary defenses when you make some show of
force—say,an annual open—water “forward patrol” exercise. Assume, further, that
when you double the frequency of your exercises to twice a year, you note a
substantial change in your adversary’s behavior. Maybe he establishes permanent
coastal defenses or increases diplomatic and political pressures against you. You
have cut the time difference between significant events (in this case, military
exercise) in half and you observe a transition in the system. Now, it would be a
silly idea to attempt to apply Feigenbaum’s constant in this scenario and predict
that the next transition in the adversary’s behavior will come if you decrease the
time interval by only 38 days. (Six months divided by Feigenbaum’s constant,
4.67, equals 38.5 days.) On the other hand, the common features of chaotic systems
suggest that—even though we have no model for the system—we should at least
be alert that the next transition in this system could come if we increase the
frequency of our exercises by only a small amount.

There may be few cases where one can afford the risk of testing such a
hypothesis on a real adversary, though force-on-force dynamics like these could
be simulated or gamed to reach significant, practical conclusions. We might
consider, for instance, whether Saddam Hussein was playing a game just like this
when he posted substantial forces along his border with Kuwait in 1994, while
the United states military was busy with events in Haiti. Was he determining the
increments of force size and timing that are necessary to provoke a U.S. military
response? Perhaps Hussein was not applying Chaos theory to his strategic deci-
sions, but we might analyze and game our own dynamics to see what increments
of Iraqi force disposition would compel us to react. An understanding of chaotic
dynamics ought to help us understand and control our response, selected from a
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flexible range of options, because knowledge of Chaos helps us foresee the likely
transitions when we change a system’s control parameters.

Any one of the following questions would require a complete study in itself.
However, they are presented to stimulate thought about the role of feedback, and
transitions between behaviors.

The increasing availability of real-time information to decision makers am-
plifies concerns about information overload. How much detail does a leader
require? How often? How much intelligence data does it take to saturate com-
manders and diminish their capacity for making effective decisions? What are
the best ways to organize and channel a literal flood of information? The common
transitions of chaotic systems suggest that it may be possible to learn how to
control the flood by studying the effects of incremental changes in key parameters
such as: volume of information, frequency of reports, number of sources involved
in generating the data, and time allotted for decision making. Understanding the
transitions from reasonable decision making to ineffective performance may help
one tailor intelligence fusion systems for the benefit of commanders.

The relative timing of an incursion on an adversary’s decision cycle may be
more important than the magnitude of the interruption. Many successful strate-
gies hinge on “getting inside the decision cycle” of the enemy. The idea, of course,
is to take some action and then move with such agility as to make a subsequent
move before an opponent has time to orient, observe, decide, and act in response
to the first action. Chaos theory offers an important new insight into this basic
strategy: we should expect ranges of different responses depending on how
“tightly” we approach the duration of an OODA loop. That is, to outpace an enemy
who operates on a twenty-four-hour decision cycle, revising the Air Tasking
Order every eighteen hours may produce the same disorientation and disruption
of the enemy as does revision on a twelve-hour or six-hour cycle. The planning
timetable could then be selected on the basis of other objectives, such as speed,
economy of force, efficiency, increased monitoring of combat effectiveness, or
resupply requirements. The idea is that we should expect ranges of control
parameter values where the system behavior is relatively consistent; but we also
should note parameter ranges where small adjustments produce drastic changes
in system response. This phenomenon is not sensitivity to initial conditions.
Rather, it relates the sensitivity of the system structureand changes in parameters,
or adjustments to the control knobs, if you will.

One final application to consider, in another area of the decision cycle:
coordinating interactions with the news media during crises. It may be found
that by adjusting the time intervals of wartime press conferences, for example,
the effects of media feedback in our own decision loops may be mitigated without
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having to resort to outright censorship. Periodic feedback, carefully timed, could
contribute to desired behaviors in domestic systems, like channels of public
support or an adversary’s systems that tune in to American television for intelli-
gence updates.

Predictability

How does Chaos theoryexplain, illuminate,reduce, or increase predictability?
Earlier sections of this paper refer to the unpredictable nature of chaotic systems:
the irregular patterns in dripping faucets, rocking buoys, flickering lasers. Now
we will consider the results that help us understand a chaotic system’s erratic
behavior.

While the paths of individual chaotic trajectories can never be accurately
predicted for very long, knowledge of a system’s attractors offers practical infor-
mation about the long-term trends in system behavior. This section begins with
a summary of powerful results that allow prediction of the short-term behavior of
chaotic systems, even with no model. The section concludes with an explanation
of the usefulness of attractors for assessing long-term system trends.

Time Series Predictions. We record—and sometimes analyze—large quantities
of data at regular time intervals: daily closing levels of the Dow Jones Industrials,
monthly inventory reports, annual defense expenditures. A list of measured data
like this, along with some index of its time intervals, is called atime series. It may
appear as a long printout of numbers, organized in a table or graph, indexed in
time.

Now, if part of the list is missing, we might interpolate by various means to
estimate the information we need. For instance, if we know a country’s tank
production was thirty vehicles three years ago, and thirty-two vehicles last year,
we might guess that the production two years ago was about thirty tanks. To make
this estimate we should first feel confident in the data we have on hand. We also
should have some idea that industrial activity over the last few years was fairly
constant. Further, there should be some reason to believe the production cycle is
annual and not biennial. Finally, we should, perhaps, have access to a model that
approximates this nation’s production habits.

More often than not, though, we are concerned with forecasting issues such as
how many tanks will a country produce next year? For such questions we must
extrapolate and make some future prediction based on previous behavior. This is
a perilous activity for any analyst, because the assumptions on which any models
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are made remain valid only within the time span of the original set of data. At
any point in the future, all those assumptions may be useless.

Unfortunately, predictions of behaviors and probabilities are an essential
activity for any military decision maker; we have to muddle through decisions
on budgets, policies, strategies, and operations with the best available informa-
tion. Notably, however, the results of Chaos theory provide a powerful new means
to predict the short-term behavior of erratic time series that we would otherwise
dismiss as completely random behavior. Very briefly, here is the basic idea. If
there were a time series with an obvious pattern, 25725725 7..., the next
entry in the list could be predicted with some confidence. On the other hand, if
the time series displayed erratic fluctuations, as in figure 15, how could it be
known whether there were discernible patterns to project into the future?
Through the embedding process, Chaos analysts can uncover patterns and sub-
patterns that are not apparent to the naked eye and use that information to project
the near-term behavior of irregular dynamics. In figure 15, for instance, where
the time series approaches periodic behavior fora few cycles,embedding methods
identify the places in phase space where these dynamics are most likely. This
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Figure 15. Chaotic Time Series for the Logistic Map . . .. What Comes Next?

technique has been applied to several complex fluids and thermal systems with
tremendous success.>*

The embedding technique, of course, does not work for all time series, and the
predictions may hold for only a few cycles past the given data set. However,
modern decision makers need to be aware of this tool for two reasons. First,
with